KAJIAN GEOMETRIK JALAN PADA DESAIN SIRKUIT GOKART DI KEMENTERIAN PUPR BANDUNG

(Studi Kasus: Sirkuit Gokart Kementerian PUPR, Kecamatan Arcamanik, Bandung)

TUGAS AKHIR

Diajukan guna melengkapi persyaratan untuk memperoleh gelar Sarjana Teknik Geodesi

ARIEF FATHURAHMAN HADID NPM 4122323130009

PROGRAM STUDI S1 TEKNIK GEODESI FAKULTAS TEKNIK PERENCANAAN DAN ARSITEKTUR UNIVERSITAS WINAYA MUKTI BANDUNG

2025

LEMBAR PENGESAHAN

KAJIAN GEOMETRIK JALAN PADA DESAIN SIRKUIT GOKART DI KEMENTERIAN PUPR BANDUNG

(Studi Kasus: Sirkuit Gokart Kementerian PUPR, Kecamatan Arcamanik, Bandung)

Diajukan guna melengkapi persyaratan untuk memperoleh gelar Sarjana Teknik Geodesi

ARIEF FATHURAHMAN HADID NPM 4122323130009

Disetujui,

Ir. Achmad Ruchlihadiana Tisnasendjaja, ST. MM NIPY. 16800007 Pembimbing I

> Mengetahui Dan Disahkan Ketua Program Studi Teknik Geodesi Fakultas Teknik, Perencanaan, Dan Arsitektur

> > Levana Apriani, S.T., M.T. NIPY. 19100118

MOTTO

"Kesuksesan adalah hasil dari kebiasaan kecil yang dilakukan secara konsisten."

PERNYATAAN ORISINALITAS

Dengan ini saya menyatakan bahwa Tugas Akhir yang berjudul "Kajian

Geometrik Pada Desain Sirkuit Gokart Di Kementerian PUPR Bandung (Studi

Kasus: Sirkuit Gokart Kementerian PUPR Bandung)" ini beserta seluruh isinya

adalah benar-benar karya saya sendiri dan tidak terdapat karya yang pernah

diajukan untuk memperoleh gelar sarjana di suatu perguruan tinggi lainnya.

Semua referensi yang dirujuk dan dikutip pada Tugas Akhir ini telah saya

nyatakan benar berdasarkan aturan-aturan pengutipan yang sesuai dengan etika

keilmuan yang berlaku dan tertera pada daftar pustaka.

Nama : Arief Fathurahman Hadid

NPM 4122323130009

Tanda Tangan : (di atas materai)

Tanggal :

ABSTRAK

Penelitian ini bertujuan untuk menganalisis kesesuaian perencanaan desain sirkuit gokart di lingkungan kantor Kementerian PUPR Bandung berdasarkan parameter geometrik yang dibandingkan dengan standar konstruksi trek gokart nasional dan pedoman internasional CIK-FIA (Commission Internationale de Karting).

Penelitian dilakukan dengan pendekatan kuantitatif melalui perhitungan geometrik pada alinyemen horizontal dan vertikal, meliputi panjang lintasan, radius tikungan, lebar jalan, gradien, superelevasi, kecepatan rencana, jarak pandang henti, dan daerah bebas samping. Hasil analisis menunjukkan bahwa beberapa parameter seperti panjang trek lurus, lebar jalan, lebar tikungan, serta nilai superelevasi telah sesuai dengan standar internasional.

Panjang lintasan keseluruhan (344,743 meter) tidak memenuhi ketentuan minimal yang disyaratkan oleh standar nasional maupun internasional. Dengan demikian, sirkuit ini belum layak untuk digunakan dalam kejuaraan resmi dan hanya dapat direkomendasikan untuk kegiatan latihan atau rekreasi berskala lokal. Penelitian ini menyarankan adanya penyesuaian trase lintasan dan koreksi pada gradien agar sirkuit dapat memenuhi standar internasional dan nasional resmi.

Kata kunci: sirkuit gokart, perencanaan geometrik, alinyemen, standar FIA

ABSTRACT

This study aims to analyze the suitability of the go-kart circuit design planning at the Ministry of Public Works and Housing (PUPR) office in Bandung, based on geometric parameters compared to the national go-kart track construction standards and international guidelines set by the CIK-FIA (Commission Internationale de Karting).

The research was conducted using a quantitative approach through geometric calculations on both horizontal and vertical alignments, covering aspects such as track length, curve radius, track width, gradient, superelevation, design speed, stopping sight distance, and lateral clearance. The analysis results indicate that several parameters, such as straight track length, track width, curve width, and superelevation, comply with international standards.

The total track length (344.743 meters) values do not meet the minimum requirements stipulated by either national or international standards. Therefore, the circuit is not yet suitable for official championships and is only recommended for training or local-scale recreational activities. This study recommends adjustments to the track alignment and corrections to the gradient to meet the official national or international standards.

Keywords: go-kart circuit, geometric planning, alignment, FIA standards

KATA PENGANTAR

Alhamdulillahirabbil alamin, Puji syukur penulis panjatkan ke hadirat Allah SWT, karena atas berkat rahmat-Nya lah tulisan ini dapat diselesaikan tepat pada waktunya. Penulisan makalah yang berjudul "Kajian Geometrik Pada Desain Sirkuit Gokart Di Kementerian PUPR Bandung (Studi Kasus: Sirkuit Gokart Kementerian PUPR Bandung)" ini dalam rangka melengkapi persyaratan untuk memperoleh gelar Sarjana Teknik Geodesi Universitas Winaya Mukti. Tulisan ini dapat penulis selesaikan berkat adanya bimbingan dan bantuan dari berbagai pihak.

Oleh karena itu, sudah sepantasnya pada kesempatan ini penulis menyampaikan ucapan terima kasih kepada semua pihak, yang telah memberikan masukan demi kelancaran dan kelengkapan makalah ini. Tentunya dalam penulisan ini terdapat kekurangan-kekurangan dan jauh dari kata sempurna. Untuk itu demi kemajuan selanjutnya, tentunya saran dari berbagai pihak sangat diharapkan dan semoga tulisan ini bermanfaat bagi siapapun yang telah membacanya.

Dengan segala kerendahan hati penulis ingin menyampaikan ucapan terimakasih yang sebesar-besarnya kepada:

- Levana Apriani, S.T., M.T., selaku Ketua Program Studi Teknik Geodesi Fakultas Teknik, Perencanaan dan Arsitektur Universitas Winaya Mukti;
- 2. Ir. Achmad Ruchlihadiana Tisnasendjaja, ST. MM., selaku pembimbing dalam penyusunan Tugas Akhir;

- Danis Suhari Singawilastra, S.T., M.T., selaku Dosen pengajar Program
 Studi S1 Teknik Geodesi Universitas Winaya Mukti;
- 4. Hidayat Mustafa, S.T., selaku Dosen pengajar Program Studi S1 Teknik Geodesi Universitas Winaya Mukti;
- 5. Balai Bahan Jalan Kementerian PUPR Bandung, yang telah memberikan dukungan berupa data dan informasi yang sangat berguna dalam proses penelitian ini sehingga penulis dapat menyelesaikan skripsi ini dengan baik.;
- Orang Tua yang telah memberikan doa, dukungan, pengorbanan baik moril maupun materil serta yang telah mendidik penulis hingga sekarang;
- 7. Pihak-pihak lain yang tidak dapat penulis sebutkan satu persatu. Semoga Allah SWT memberikan balasan yang setimpal kepada semuanya.

Penulis berharap Tugas Akhir yang disusun dapat memberikan pengetahuan kepada para pembaca, sehingga dapat memberikan dampak positif bagi pengetahuan dan wawasan kita semua. Dalam rangka perbaikan selanjutnya, penulis terbuka terhadap saran dan masukan dari semua pihak karena menyadari Tugas Akhir yang telah disusun memiliki banyak sekali kekurangan. Semoga hasil laporan ini bermanfaat bagi semua pembaca.

Bandung, 04 Agustus 2025

Penulis Arief Fathurahman Hadid

DAFTAR ISI

ABSTRAKi
ABSTRACTii
KATA PENGANTARiii
DAFTAR ISIv
DAFTAR GAMBARvii
DAFTAR TABELviii
DAFTAR LAMPIRANix
DAFTAR SINGKATANx
DAFTAR ISTILAH xi
BAB 1 PENDAHULUAN1
1.1 Latar Belakang1
1.2 Identifikasi Masalah3
1.3 Rumusan Masalah
1.4 Tujuan Penelitian4
1.5 Manfaat Penelitian4
BAB 2 DASAR TEORI5
2.1 Geometrik Jalan5
2.2 Detail Situasi6
2.3 Alinyemen Horizontal6
2.4 Alinyemen Vertikal7
2.5 Pedoman Desain Geometrik Jalan
2.5.1 Kecepatan Maksimum Pada Tikungan9
2.5.2 Gradien9
2.5.3 Superelevasi
2.5.4 Jarak Pandang Henti
2.5.5 Daerah Bebas Samping diTikungan
2.5.6 Pelebaran Pada Tikungan
2.6 Pedoman Keselamatan Kontruksi Jalur Sirkuit Gokart Nasional 14

2.7	Pedoman I	Keselamatan Jalur Sirkuit Gokart Internasional	15
	2.7.1 Sir	kuit Rekreasi	16
2.8	Penelitian	Terkait	17
BAB 3 ME	TODE PEN	ELITIAN	20
3.1	Metode Pe	nelitian	20
3.2	Metode Pe	ngumpulan Data	20
3.3	Metode Pe	ngolahan Data	21
3.4	Metode Ar	alisis Data	22
3.5	Kerangka l	Penelitian	23
3.6	Operasiona	ılisasi penelitian	24
3.7	Lokasi Per	elitian	24
3.8	Data Penel	itian	26
3.9	Rancangar	Penelitian	27
BAB 4 HA	SIL DAN PE	MBAHASAN	32
4.1	Pengukura	n Detail Situasi	32
4.2	Alinyemer	Horizontal	36
	4.2.1 Kee	epatan Maksimum Pada Tikungan	37
	4.2.2 Jara	ak Pandang Henti Minimum	38
		erah Bebas Samping di Tikungan	
4.3	Alinyemer	Vertikal	40
4.4	Analisis K	elayakan Desain Sirkuit Gokart	42
BAB 5 KES	IMPULAN	ſ	46
5.1	Kesimpula	n	46
5.2	Saran		47
DAFTAR F	USTAKA.		48
LAMPIRA	J		51

DAFTAR GAMBAR

Gambar 2. 1 Superelevasi Jalan (Pedoman Desain Geometrik Jalan, 2021)	10
Gambar 2. 2 Ilustrasi Jarak Pandang Henti	12
Gambar 2. 3 Daerah Bebas Samping di Tikungan	13
Gambar 3. 1 Kerangka Pemikiran	23
Gambar 3. 2 Peta Lokasi Penelitian	25
Gambar 3. 3 Diagram Alir Penelitian	28
Gambar 4. 1 Peta Detail Situasi Sirkuit Gokart	35
Gambar 4. 2 Kecepatan Rencana dan Superelevasi Maksimal	36
Gambar 4 3 Desain Sirkuit Gokart	37

DAFTAR TABEL

Tabel 2. 1 Jarak Pandang Henti Minimum	11
Tabel 2. 2 Ketentuan Pelebaran Pada Tikungan	14
Tabel 2. 3 Persyaratan Geometrik Desain Sirkuit Gokart Nasional	15
Tabel 2. 4 Spesifikasi Geometrik Sirkuit Gokart CIK-FIA	16
Tabel 2. 5 Penelitian Terdahulu	18
Tabel 2. 6 Penelitian Terkait (lanjutan)	19
Tabel 4. 1 Koordinat Pengukuran Detail Situasi	33
Tabel 4. 2 Koordinat Pengukuran Detail Situasi (lanjutan)	34
Tabel 4. 3 Alinyemen Horizontal	40
Tabel 4. 4 Alinyemen Vertikal	42
Tabel 4. 5 Hasil Perbandingan Spesifikasi Sirkuit Nasional	44
Tabel 4. 6 Hasil Perbandingan Spesifikasi Sirkuit Internasional	45

DAFTAR LAMPIRAN

Lampiran 1 Peta Desain Sirkuit Gokart	51
Lampiran 2 Hasil Spesifikasi Geometrik Sirkuit Nasional	52
Lampiran 3 Hasil Spesifikasi Geometrik Sirkuit Internasional	53

DAFTAR SINGKATAN

PUPR : Pekerjaan Umum dan Perumahan Rakyat

CIK : Commission Internationale de Karting

FIA : Fédération Internationale de l'Automobile

STA : Station (Penanda titik lintasan)

IMI : Ikatan Motor Indonesia.

DAFTAR ISTILAH

Sirkuit Gokart : Jalur atau lintasan tertutup yang dirancang khusus untuk

olahraga balap gokart.

Alinyemen Horizontal : Rancangan lintasan pada bidang datar yang meliputi

tikungan, garis lurus, dan transisi.

Alinyemen Vertikal : Rancangan lintasan pada bidang vertikal yang mencakup

elevasi, gradien, dan elevasi jalan.

Gradient : Kemiringan lintasan terhadap garis horizontal,

dinyatakan dalam persen (%).

Superelevasi : Kemiringan lintasan ke arah luar tikungan untuk

menyeimbangkan gaya sentrifugal.

Gaya Sentrifugal : Gaya sentrifugal adalah dorongan yang terasa saat kita

berputar, seolah-olah tubuh kita terdorong keluar

menjauhi pusat putaran.

Radius Tikungan : Jarak dari pusat lengkung ke batas dalam tikungan pada

lintasan.

Homologasi : Proses pengesahan teknis oleh lembaga resmi bahwa

suatu sirkuit memenuhi standar perlombaan.

Kecepatan Rencana : Kecepatan yang dirancang untuk digunakan sebagai

dasar perhitungan elemen geometrik lintasan.

BAB 1 PENDAHULUAN

Gokart atau balapan Kart atau karting adalah varian dari olahraga bermotor atap terbuka sederhana dan kecil, kendaraan roda empat disebut karts, gokart, atau gearbox/shifter karts tergantung pada desain. Mereka biasanya berpacu di sirkuit skala kecil. Gokart dalam taman hiburan mungkin terbatas pada kecepatan yang tidak lebih dari 60 km/jam. (Nazaruddin, 2020). Dengan kecepatan seperti itu kecelakaan dalam gokart sangat sulit untuk dihindari apabila kondisi jalan yang tidak aman, sehingga perlu dilakukannya analisis geometrik untuk desain sirkuit gokart.

1.1 Latar Belakang

Sirkuit gokart rekreasi adalah lintasan atau arena yang dirancang untuk aktivitas balapan gokart dengan tujuan hiburan dan rekreasi. Sirkuit rekreasi biasanya lebih fleksibel, dengan dimensi dan fasilitas yang disesuaikan dengan penggunaan hiburan dan latihan. Kecepatan maksimum gokart rekreasi bervariasi tergantung tipe dan pengaturan mesin, namun umumnya berkisar antara 18 km/jam hingga 60 km/jam untuk gokart di arena umum. Untuk gokart balap profesional (Superkart), kecepatannya bisa lebih dari 260 km/jam, tetapi ini bukan tipe yang biasa untuk rekreasi umum. (Eric Kusidy, 2023).

Perencanaan Geometrik jalan merupakan salah satu persyaratan dari perencanaan jalan yang merupakan rancangan arah dan visualisasi dari trase jalan agar jalan memenuhi persyaratan selamat, aman, nyaman, efisien. Dalam pembuatan sirkuit gokart geometrik jalan harus diperhatikan untuk menghindari kecelakaan yang dapat terjadi. (Pujiastutie, 2006). Penggunaan kajian geometrik pada jalan dapat menjadi suatu acuan dalam perencanaan geometrik tikungan yang aman dan nyaman, yang disebut sebagai kecepatan rencana. Dengan kata lain, apabila seorang pengemudi berjalan sesuai dengan kecepatan rencana, maka pengemudi tersebut akan dapat melintasi tikungan dengan aman dan nyaman. Akan tetapi, apabila kecepatan yang digunakan tidak sesuai, terutama bila terlalu tinggi di atas kecepatan rencana yang digunakan, maka pengemudi tersebut tidak akan merasa nyaman saat melintasi tikungan, bahkan bisa menjadi tidak aman, sehingga berpotensi menimbulkan kecelakaan. (Djoko Purwanto, 2015).

Kondisi jalan yang tidak sesuai dan cenderung dipaksakan akan mempengaruhi tidak nyamannya pengguna sirkuit gokart untuk melintasi jalan, produktivitas umur jalan menurun, dan berpotensi menimbulkan kecelakaan. Oleh karena itu penelitian ini melakukan pengkajian geometrik jalan pada sirkuit gokart di Kementerian PUPR Bandung. Tujuan dari penelitian ini adalah untuk mendapatkan radius minimal tikungan, gradien maksimum, lebar tikungan dan panjang jalan yang dibuat sesuai dengan standarisasi, dengan menggunakan acuan dari *National Track Contruction And Safety Guidlines*c dan acuan sirkuit internasional, *Leisure Karting Guidline* CIK (*Commission International Karting*) serta Pedoman Geometrik Jalan PUPR.

1.2 Identifikasi Masalah

Berdasarkan latar belakang diatas, permasalahan penelitian ini dapat diidentifikasikan berkaitan dengan pengkajian geometrik desain. Sehingga jalan yang akan digunakan perlu dilakukan perhitungan geometrik terlebih dahulu dengan melakukan identifikasi geometrik pada desain jalan seperti *centerline* jalan, tepi jalan, dan alinyemen horizontal serta vertikal jalan yang dihasilkan dari proses topografi dan desain AutoCAD jalan yang sudah dibuat untuk menghasilkan ketelitian yang baik sesuai dengan standarisasi yang sudah ditentukan, sehingga ketelitian yang dihasilkan dari pengukuran geometrik ini dapat digunakan sebagai dasar pembuatan jalan sirkuit gokart.

1.3 Rumusan Masalah

Berdasarkan identifikasi masalah. Pengkajian geometrik pada desain sirkuit gokart perlu dilakukan. Sehingga hasil ketelitian dapat dijadikan sebagai dasar pembuatan sirkuit gokart. Maka rumusan masalah dalam penelitian ini adalah:

- Apakah perencanaan desain sirkuit gokart di kantor Kementerian PUPR
 Bandung telah sesuai standar kontruksi trek nasional dan pedoman trek
 internasional CIK (Commission International Karting)?
- 2. Bagaimana analisis alinyemen horizontal dan vertikal pada desain sirkuit gokart di kantor Kementerian PUPR Bandung?

1.4 Tujuan Penelitian

Berdasarkan rumusan masalah maka tujuan dilakukan penelitian ini adalah untuk:

- Mengetahui desain sirkuit gokart di kantor Kementerian PUPR Bandung telah sesuai standar kontruksi trek nasional dan pedoman trek internasional CIK (Commission International Karting)
- Mengetahui analisis alinyemen horizontal dan vertikal pada desain sirkuit gokart di kantor Kementerian PUPR Bandung.

1.5 Manfaat Penelitian

Manfaat penelitian yang diperoleh dari penulisan tugas akhir ini adalah manfaat secara teoritis dan manfaat secara praktis.

1. Manfaat Teoritis

Adapun manfaat penelitian ini secara teoritis adalah:

- Menjadi bahan masukan untuk penerapan ilmu dalam merencanakan lintasan sirkuit gokart
- Sebagai acuan dalam menganalisis alinyemen horizontal dan alinyemen vertikal.
- Dapat menjadi referensi dalam penelitian selanjutnya yang berhubungan dengan geometrik jalan.

2. Manfaat Praktis

Diharapkan hasil penelitian ini dapat dimanfaatkan secara praktisi sebagai rekomendasi dalam pembuatan desain sirkuit gokart.

BAB 2 DASAR TEORI

Perencanaan geometrik jalan merupakan bagian dari perencanaan jalan yang dititik beratkan pada perencanaan bentuk fisik sehingga dapat memenuhi fungsi dasar dari jalan yaitu memberikan pelayanan yang optimum pada arus lalu lintas dan memaksimalkan rasio tingkat penggunaan biaya pelaksanaan. (Aldrin V Ferdinandus, 2017). Tujuan dari perencanaan geometrik jalan adalah menghasilkan infra struktur yang aman, dapat memberikan rasa aman dan nyaman kepada pemakai jalan. (Sukirman, 1999).

2.1 Geometrik Jalan

Geometrik jalan adalah perencanaan dari suatu ruas jalan secara lengkap, meliputi beberapa elemen yang disesuaikan dengan kelengkapan dan data dasar yang ada atau tersedia dari hasil survei lapangan dan telah dianalisis dengan suatu standar perencanaan. Tujuan perencanaan geometrik jalan adalah untuk menghasilkan kondisi geometrik jalan yang mampu memberikan pelayanan lalu lintas secara optimum sesuai dengan fungsi jalan. Disamping itu fungsi dari perencanaan ini adalah berkaitan dengan keamanan dan kenyamanan dalam berlalu lintas bagi pemakai jalan. (Rindu Twidi Bethary, 2016).

Elemen geometrik dasar jalan mencakup alinyemen horizontal, alinyemen vertikal, lebar jalan, radius tikungan, kemiringan, dan elemen-elemen lain yang membentuk geometrik fisik jalan. Alinyemen horizontal mengacu pada lengkungan horizontal jalan, sedangkan alinyemen vertikal mengacu pada perubahan ketinggian vertikal. Lebar jalan menentukan ruang untuk kendaraan, pejalan kaki, dan jalur sepeda. Radius tikungan menentukan sudut belok jalan. Kemiringan mengacu pada kecuraman jalan. (Dr. Mukhtar Lutfie, 2024).

2.2 Detail Situasi

Pemetaan situasi dan detail adalah pemetaan suatu daerah atau wilayah ukur yang mencakup penyajian dalam tiga dimensi koordinat horizontal dan koordinat vertikal secara bersama-sama dalam suatu gambar peta. Prinsipnya dengan menentukan objek-objek penting berdasarkan unsur sudut dan jarak dalam jumlah yang cukup, sehingga dapat mewakili atau menggambarkan daerah tersebut dan seisinya secara jelas mungkin dengan skala tertentu. Peralatan dan perlengkapan yang digunakan biasanya dengan menggunakan alat theodolit dan meteran. Seiring dengan perkembangan teknologi peralatan yang digunakan menggunakan total station yang mana alat ini dapat menyimpan data dan mengukur jarak secara langsung, bahkan sekarang ini pemetaan situasi dapat dilakukan dengan menggunakan metode survei GNSS. (Ega Gumilar Hafiz, 2014).

2.3 Alinyemen Horizontal

Alinyemen horizontal adalah bentuk horizontal jalan pada bidang tertentu, yang dapat memberi kenyamanan, keamanan maupun sebaliknya. Alinyemen

horizontal dapat disebut juga dengan nama "trase jalan" atau "situasi jalan", yang terbentuk dari garis garis lurus yang dihubungkan dengan garis lengkung. Garis-garis lengkung tersebut dapat terdiri dari sebuah busur lingkaran disertai busur peralihan, dan busur peralihan atau busur lingkaran. (Mochammad Qomaruddin, 2016).

Alinyemen horizontal jalan umumnya berupa serangkaian bagian-bagian jalan yang lurus dan melengkung berbentuk busur lingkaran, dan yang dihubungkan oleh lengkung peralihan. Kecepatan kendaraan yang digunakan pengemudi untuk berjalan di jalan, dipengaruhi terutama oleh persepsi pengemudi terhadap fitur alinyemen horizontal jalan selain fitur elemen-elemen jalan yang lainnya seperti rambu batas kecepatan. Radius lengkungan harus cukup besar untuk mengizinkan kecepatan tempuh di lengkungan sama dengan pada bagian lurus atau di sepanjang ruas jalan yang sedang didesain. Desain alinyemen horizontal hendaknya dipilih sebisa mungkin lurus dengan radius tikungan sebesar mungkin, kecuali panjangnya yang perlu dibatasi untuk menetralisir monotonitas bentuk jalan yang membosankan pengemudi sehingga melalaikan kewaspadaan mengemudi. (Hizkia Davidson A. Milla, 2024).

2.4 Alinyemen Vertikal

Alinyemen vertikal, yang juga dikenal sebagai profil jalan atau penampang memanjang, adalah proyeksi sumbu jalan pada bidang vertikal yang berbentuk penampang memanjang jalan. Perencana harus membuat desain alinyemen vertikal untuk menghubungkan dua kelandaian dan elevasi jalan. Alinyemen vertikal biasanya dibedakan menjadi lengkung vertikal cembung dan cekung. Dalam merencanakan alinyemen vertikal, beberapa faktor penting harus dipertimbangkan. Ini termasuk

kelandaian, panjang kritis, laju pendakian, dan bentuk lengkung vertikal. Alinyemen vertikal adalah perpotongan bidang vertikal dengan perkerasan yang melewati garis tengah untuk jalan dua jalur, dua arah, atau tepi dalam setiap jalan untuk garis tengah khusus. Bagian vertikal disebut juga dengan bagian vertikal garis yang terdiri atas garis lurus dan kurva. (Andi Ibrahim Yunus, 2023).

2.5 Pedoman Desain Geometrik Jalan

Pedoman Desain Geometrik Jalan (PDGJ) ini merupakan revisi Pedoman Tata Cara Perencanaan Geometrik Jalan Antar Kota tahun 1997 yang disusun oleh Direktorat Jenderal Bina Marga, Departemen Pekerjaan Umum, meliputi perubahan struktur penyajian untuk memudahkan pemahaman pengguna, perluasan substansi, dan perbaikan kandungannya. Pedoman ini dimaksudkan sebagai acuan teknis bagi desainer geometrik jalan yang sudah berkecimpung dalam bidang desain geometrik jalan baik untuk jalan antarkota, jalan perkotaan, maupun untuk jalan bebas hambatan, yang memberikan batasan minimum dan maksimum pada parameter desainnya, sehingga desainer mempunyai kelonggaran dalam mendesain suatu ruas jalan dengan mempertimbangkan persyaratan ideal desain, hasil survei lapangan, dan kondisi medan yang ditinjau yang akan menjadi kriteria desain untuk menghasilkan produk desain yang akurat, memenuhi kebutuhan, dan memenuhi kaidah teknis yang dapat diterapkan dalam pelaksanaan fisik di lapangan. (Pedoman Desain Geometrik Jalan, 2021).

2.5.1 Kecepatan Maksimum Pada Tikungan

Kecepatan maksimum pada tikungan adalah kecepatan tertinggi yang dapat dicapai sebuah kendaraan saat melewati tikungan tanpa tergelincir atau keluar dari lintasan. Hal ini sangat bergantung pada beberapa faktor utama seperti gaya gesek antara ban dan permukaan jalan, jari-jari tikungan, dan sudut kemiringan jalan (superelevasi). Kecepatan maksimum pada tikungan dapat dihitung dengan menggunakan rumus 2.1:

$$V = \sqrt{R(g(e+f))}$$
 (2.1)

Keterangan:

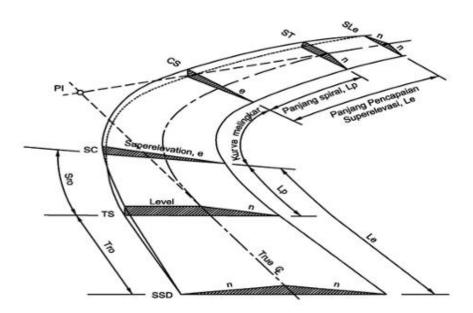
V = Kecepatan maksimum

R = Radius tikungan (m)

e = Superelevasi

g = Percepatan gravitasi = 9.8

f = Koefisien gesekan = 0,15 untuk jalan aspal


2.5.2 Gradien

Gradien dalam konteks desain geometrik jalan adalah ukuran perubahan elevasi atau kemiringan jalan yang dinyatakan sebagai persentase atau rasio perubahan ketinggian terhadap jarak horizontalnya. Gradien menunjukkan seberapa curam suatu tanjakan atau turunan pada jalan tersebut. Pada desain jalan, gradien ini sangat penting untuk diperhatikan agar kendaraan dapat melewati tanjakan atau turunan dengan aman dan nyaman serta mempertimbangkan kemampuan mesin kendaraan dan faktor keselamatan lainnya. Gradien ini dapat dihirung dengan rumus 2.2:

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak \ Horizontal} \times 100\%.$$
 (2.2)

2.5.3 Superelevasi

Superelevasi adalah kemiringan melintang di tikungan yang berfungsi mengimbangi gaya sentrifugal yang diterima kendaraan pada saat berjalan melalui tikungan pada kecepatan. Superelevasi dicapai secara bertahap dari kemiringan melintang normal pada jalan lurus hingga kemiringan maksimal pada tikungan penuh. Perancangan super elevasi memperhitungkan kecepatan rancang, jari-jari tikungan, dan koefisien gesekan antara ban dan permukaan jalan; nilai kemiringan biasanya diterapkan secara bertahap mulai dari lereng normal sampai kemiringan penuh di pusat tikungan untuk mencegah perubahan lateral yang tiba-tiba. (Prima Juanita Romadhona, 2016). Superelevasi dapat dilihat pada gambar 2.1.

Gambar 2. 1 Superelevasi Jalan (Pedoman Desain Geometrik Jalan, 2021)

2.5.4 Jarak Pandang Henti

Jarak Pandang adalah suatu jarak yang diperlukan oleh seorang pengemudi pada saat mengemudi sedemikian sehingga jika pengemudi melihat suatu halangan yang membahayakan, pengemudi dapat melakukan sesuatu untuk menghidari bahaya tersebut dengan aman. Dibedakan dua Jarak Pandang, yaitu Jarak Pandang Henti (Jph) dan Jarak Pandang Mendahului (Jpm).

Tabel 2. 1 Jarak Pandang Henti Minimum (Pedoman Desain Geometrik Jalan, 2021).

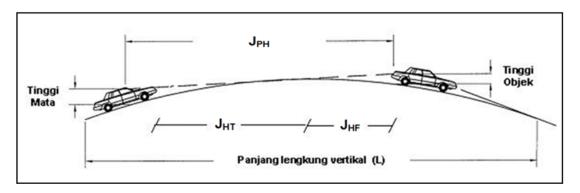
Jarak Pandang Henti minimum								
VD, km/jam 120 100 80 60 50 40 30 20								
JPH minimum	250	175	120	75	55	40	27	16

JPH merupakan jarak yang memungkinkan pengemudi terbiasa waspada berkendaraan pada kecepatan desain di atas perkerasan jalan basah, untuk melihat, bereaksi, dan mengerem hingga kendaraan berhenti sebelum mencapai objek bahaya yang ada di depannya. JPH dapat dihitung berdasarkan persamaan 2.3:

$$JPH = \frac{VD.T}{3.6} + \frac{VD^2}{2 \times 3.6^2 \times g(\frac{a}{g} + G)}...$$
(2.3)

Keterangan:

Jph = Jarak pandang henti minimum (m)


VD = Kecepatan rencana (km/jam)

T = Waktu reaksi ditetapkan 2,5 detik

g = Percepatan gravitasi = 9,8 m

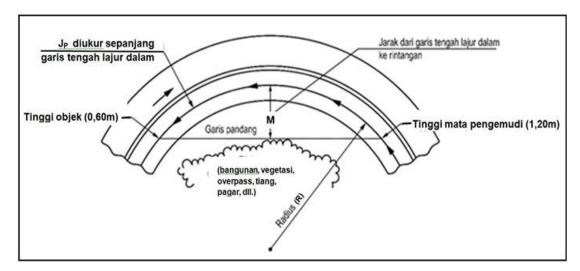
a = perlambatan longitudinal ditetapkan 3,4 m/s

G = gradien/kelandaian memanjang jalan

Gambar 2. 2 Ilustrasi Jarak Pandang Henti

2.5.5 Daerah Bebas Samping diTikungan

Daerah bebas samping ditikungan adalah ruang untuk menjamin kebebasan pandang di tikungan sehingga Jh dipenuhi. Daerah bebas samping dimaksudkan untuk memberikan kemudahan pandangan di tikungan dengan membebaskan obyek-obyek penghalang sejauh M (m), diukur dari garis tengah lajur dalam sampai obyek penghalang pandangan sehingga persyaratan Jh dipenuhi. Daerah bebas samping di tikungan dapat dihitung dengan menggunakan rumus 2.4 (Pedoman Desain Geometrik Jalan, 2021):


$$M = R\left(1 - Cos\left(\frac{28,65 \cdot JPH}{R}\right)\right).$$
 (2.4)

Keterangan:

M = Jarak bebas samping di tikungan (m)

R = Radius di pusat lajur di tikungan (m)

JPH = Jarak pandang henti (m)

Gambar 2. 3 Daerah Bebas Samping di Tikungan

2.5.6 Pelebaran Pada Tikungan

Pelebaran pada tikungan dimaksudkan untuk mempertahankan konsistensi geometrik jalan pada tikungan agar kondisi operasional di tikungan sama dengan di bagian jalan lurus. Pelebaran jalan di tikungan mempertimbangkan kesulitan pengemudi untuk menempatkan kendaraan tetap pada jalurnya. Dalam segala hal pelebaran di tikungan harus memenuhi gerak perputaran kendaraan rencana sedemikian sehingga proyeksi kendaraan tetap pada lajumya. (Tata Cara Perencanaan Geometrik Jalan Antar Kota, No. 038/TBM/1997). Pelebaran di tikungan ditentukan oleh radius belok kendaraan rencana dapat dilihat pada tabel 2.2 berikut.

Tabel 2. 2 Ketentuan Pelebaran Pada Tikungan

Radius	Kecepatan Rencana Vr (km/jam)			
(m)	50	60		
150	1.3	1.4		
140	1.3	1.4		
130	1.3	1.4		
120	1.3	1.4		
110	1.3	tikungan tidak dapat digunakan		
100	1.4	tikungan tidak dapat digunakan		
90	1.4	tikungan tidak dapat digunakan		
80	1.6	tikungan tidak dapat digunakan		
70	1.7	tikungan tidak dapat digunakan		

2.6 Pedoman Keselamatan Kontruksi Jalur Sirkuit Gokart Nasional

Pedoman ini berisi panduan lintasan gokart terkait perencanaan sirkuit yang dibuat oleh *Australian Karting Association*, dimana bentuk lintasan, baik dalam tampak atas maupun profil vertikal tidak dibatasi secara kaku oleh pedoman ini karena sangat bergantung pada berbagai variabel, seperti jenis perlombaan yang diakomodasi, kondisi topografi, aspek ekonomi, estetika, dan juga nilai-nilai tradisional. Meski demikian, pembangunan sirkuit tetap harus mematuhi standar keselamatan yang sudah ditetapkan.

Dalam merancang sirkuit gokart, penting untuk memperhatikan aspek keselamatan guna memastikan pengendara merasa aman saat melintas. Oleh karena itu, pedoman ini dapat dijadikan referensi dalam menentukan panjang lintasan, lebar jalur, dan kemiringan (superelevasi) yang sesuai dalam pembangunan sirkuit gokart. (National Track Contruction and Safety Guidlines, Version 5 Updated October 2016).

Tabel 2. 3 Persyaratan Geometrik Desain Sirkuit Gokart Nasional

Persyaratan Geometrik Desain Sirkuit					
Panjang lintasan keseluruhan	1700 meter atau < 2000 meter				
Panjang Trek lurus	< 100 meter				
Lebar trek lurus	> 5 meter dengan rekomendasi: 6 meter, maksimum 7,5 meter				
Lebar tikungan	> 6 meter atau 1,5 meter lebih lebar dari trek lurus				
Superelevasi maksimal	rekomendasi 5%, maksimum 10%				

2.7 Pedoman Keselamatan Jalur Sirkuit Gokart Internasional

Pedoman ini merupakan panduan dari CIK-FIA (Commission International Karting-Federation International Automobile) yang ditujukan untuk kegiatan gokart rekreasi (leisure karting), yang telah berkembang secara signifikan dan tidak hanya terbatas pada kompetisi formal. Dalam dokumen ini disebutkan bahwa desain harus mempertimbangkan karakter pengguna lintasan, jenis aktivitas, kecepatan kendaraan, kondisi topografi, dan tentu saja pertimbangan keselamatan yang disesuaikan dengan pengalaman pengguna yang beragam (usia, berat badan, kemampuan mengemudi). (Commission Internationale Karting-FIA, 2023). Pedoman ini berfungsi sebagai referensi teknis dan keselamatan bagi pengelola fasilitas karting, yang mencakup lebar jalur, panjang lintasan, sistem pelindung, hingga sistem sinyal. Semua ini bertujuan untuk menjamin keamanan dan kenyamanan pengguna lintasan, terutama bagi pengemudi yang tidak berpengalaman.

infrastruktur sirkuit harus dirancang dengan mempertimbangkan aspek keselamatan secara menyeluruh, termasuk lintasan, kendaraan, pengemudi, serta pengelolaan operasional. Pedoman ini berlaku untuk sirkuit dalam dan luar ruangan, namun tidak menggantikan atau mengesampingkan regulasi nasional atau lokal yang berlaku. (Commission Internationale Karting-FIA, 2023). Desain sirkuit sangat disarankan untuk memenuhi beberapa rekomendasi teknis seperti pada tabel 2.4.

Tabel 2. 4 Spesifikasi Geometrik Sirkuit Gokart CIK-FIA

	Spesifikasi Geometrik Sirkuit Gokart Berlisensi CIK-FIA					
No	No Komponen Spesifikasi					
1	Panjang Sirkuit Gokart	Minimal 800 meter atau Maksimum 1700 meter				
2	Panjang lintasan Lurus	120 - 150 Meter				
3						
4						
5	5 Kecepatan Maksimum minimal 80 km/jam					
6	Superelevasi Lintasan	Direkomendasikan Sekitar 5%				
7 Gradien Elevasi Naik/Turun ≤ 5%, dengan gradien rekomendasi 2-39						
8	Permukaan Lintasan	Beton/Aspal, bebas lubang, dengan drainase				

2.7.1 Sirkuit Rekreasi

Dalam regulasi CIK-FIA, *leisure karting* atau sirkuit rekreasi adalah kategori lintasan yang dirancang khusus untuk kegiatan karting non-kompetitif, biasanya digunakan untuk penyewaan atau hiburan. Fokus utamanya adalah memberikan pengalaman berkendara yang aman dan menyenangkan bagi berbagai kalangan, mulai dari pemula, anak-anak, hingga penggemar karting yang tidak berpartisipasi dalam balap resmi. Desain sirkuitnya mempertimbangkan faktor keamanan ekstra, seperti lebar lintasan yang memadai, radius tikungan yang tidak terlalu tajam, gradien landai, dan area *run-off* yang lebih luas, sehingga risiko kecelakaan dapat diminimalkan. Berbeda dengan sirkuit kompetisi kelas nasional atau internasional, sirkuit rekreasi

pada CIK-FIA biasanya memiliki kecepatan maksimum 60 km/jam, tata letak yang lebih sederhana, serta memilikin gradien atau superelevasi yang lebih datar. Standar ini memungkinkan pengelola untuk mengakomodasi pengunjung dengan berbagai tingkat kemampuan, tanpa mengorbankan aspek keselamatan dan kenyamanan. (Leisure Karting Guidlines, 2023)

2.8 Penelitian Terkait

Penelitian ini merujuk pada sejumlah studi sebelumnya yang dijadikan sebagai bahan pembanding dan landasan kajian. Berbagai penelitian terdahulu yang membahas mengenai kajian geometrik sirkuit dapat dilihat dalam tabel 2.5. Pemahaman terhadap hasil penelitian tersebut membantu analisis dalam studi ini.

Tabel 2. 5 Penelitian Terdahulu

Peneliti/Penulis	Instansi	Tahun	Judul Penelitian	Hasil Penelitian
Esya Almunawaroh	Jurusan Teknik Sipil, Fakultas Teknik, Universitas Palangka Raya	2024	Analisis Pengaruh Geometrik Jalan Raya terhadap Potensi Kecelakaan (Studi Kasus: Ruas Jalan Kalibata Kota Palangka Raya)	Geometrik jalan yang tidak sesuai dengan standar Bina Marga (misalnya lebar jalan kurang dari 6 m dan sudut tikungan terlalu tajam) berkontribusi terhadap potensi kecelakaan lalu lintas. Rekomendasi desain ulang alinyemen horizontal dan penambahan superelevasi 4–6% sesuai kecepatan desain 50–60 km/jam.

Tabel 2. 6 Penelitian Terkait (lanjutan)

Peneliti/Penulis	Instansi	Tahun	Judul Penelitian	Hasil Penelitian
Arfiadi Meidiansyah, ST	Fakultas Teknik Univeristas Lambung Mangkurat	2018	Rekayasa desain geometrik track sirkuit pada proyek perencanaan sirkuit road race km. 9 Bumi Rahayu dalam rangka akselerasi prestasi atlet balap motor Kabupaten Bulungan	Secara teknis merancang sirkuit road race sepanjang 1.398 meter dengan pendekatan geometrik horizontal, termasuk perhitungan radius tikungan, jenis tikungan (chicane, rolling, stop-and- go), Menyesuaikan bentuk lintasan dengan topografi dan daya dukung tanah agar efisien dari sisi cut & fill.
Eric Kusidy	Program Studi Arsitektur, Fakultas Teknik Sipil dan Perencanaan Institut Sains dan Teknologi TD. Pardede, Medan	2023	Perancangan Sirkuit Karting Medan Dengan Pendekatan Arsitektur Post-Modern	Penelitian ini menghasilkan desain sirkuit karting di Medan yang menggabungkan fungsi olahraga, rekreasi, dan edukasi dengan pendekatan arsitektur postmodern. Peneliti menggunakan standar FIA sebagai acuan umum dan melakukan survei untuk mengetahui minat masyarakat terhadap gokart.

BAB 3 METODE PENELITIAN

Dalam Penelitian ini menggunakan data berupa file desain sirkuit gokart dalam format DWG serta pedoman geometrik sirkuit gokart. Data yang digunakan terdiri dari data primer dan sekunder yang diperoleh melalui instansi terkait. Selanjutnya, data tersebut dikumpulkan, diolah, dan dianalisis menggunakan pendekatan metode penelitian kuantitatif.

3.1 Metode Penelitian

Dalam penyusunan penelitian ini dilakukan metode penelitian kuantitatif. Metode penelitian kuantitatif adalah langkah-langkah ilmiah yang ditempuh oleh seorang peneliti dengan menggunakan pendekatan kuantitatif untuk memperoleh data yang dikuantifikasi dan dianalisis untuk menjawab/memecahkan suatu masalah. (Dr. Abdul Muin, 2023). Penelitian kuantitatif mencakup tahapan pengumpulan data, pengolahan data, serta analisis data, yang akan dijelaskan lebih lanjut di bawah ini.

3.2 Metode Pengumpulan Data

Metode yang dilalukan dalam tahapan pengumpulan data berupa data sekunder dan data primer. Data primer adalah data basis atau utama yang digunakan dalam penelitian sedangkan, data sekunder adalah informasi yang dikumpulkan dari sumber-sumber yang telah ada. (Balaka, 2022).

Data Primer dalam penelitian ini didapatkan dari perusahaan terkait. Adapun data yang diperoleh sebagai berikut:

- 1. Data DWG perencanaan desain sirkuit gokart dikantor Kementerian PUPR.
- 2. Data detail situasi sirkuit gokart Kementerian PUPR.
- 3. Data acuan pembuatan sirkuit gokart *National Track Contruction And Safety Guidlines* yang dibuat oleh *Australian Karting Association*.
- 4. Data acuan pembuatan sirkuit gokart internasional CIK (*Commission International Karting*).
- 5. Pedoman Geometrik Jalan PUPR.

3.3 Metode Pengolahan Data

Metode pengolahan data yang dilakukan dalam penelitian ini menggunakan bantuan perangkat lunak *Autocad* dan *Microsoft Excel*. Adapun uraian dalam pengolahan data penelitian ini adalah sebagai berikut:

1. Pengolahan Data Desain Sirkuit Gokart

Pengolahan data desain sirkuit gokart menggunakan perangkat lunak *Autocad*. Data desain sirkuit gokart dimanfaatkan dalam mengidentifikasi elemen geometrik seperti lebar jalan, titik lengkung horizontal, radius tikungan, elevasi jalan pada tikungan dan panjang jalan serta tikungan yang digunakan dalam desain sirkuit gokart. untuk mengetahui data geometrik yang dibutuhkan dalam perhitungan alinyemen horizontal dan vertikal.

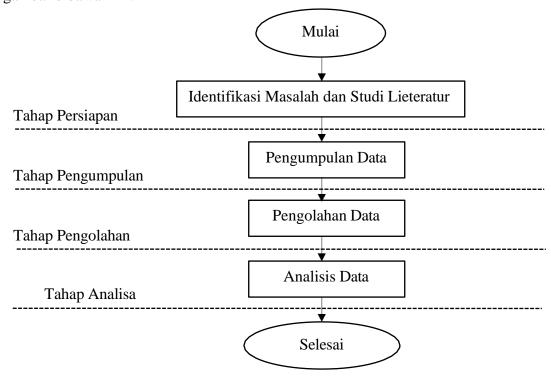
2. Pengolahan Data Perhitungan Geometrik

Proses pengolahan data ini untuk diuji kelayakan menggunakan data pedoman pembuatan jalan sirkuit gokart yang mengacu pada Pedoman Geometrik Jalan PUPR dan *National Track Contruction And Safety Guidlines* serta pedoman trek internasional CIK (*Commission International Karting*). Pengolahan data geometrik atau alinyemen horizontal dan vertikal ini menggunakan perangkat lunak *Microsoft Excel*, dengan menghitung gradien pada setiap tikungan, kecepatan maksimum berdasarkan gaya sentrifugal, jarak pandang henti, dan daerah bebas samping di tikungan.

3.4 Metode Analisis Data

Analisis data merupakan usaha/upaya data yang tersedia yang selanjutnya diolah dengan bantuan instrumen statistik dalam menjawab rumusan masalah yang ada dalam penelitian. Kegiatan analisis data dalam penelitian kuantitatif meliputi pengolahan dan penyajian data, melakukan berbagai perhitungan untuk mendeskripsikan data. (Sofwatillah, 2024).

Analisis dilakukan melalui tahapan pengkategorian data, yang kemudian diuraikan menjadi unit informasi yang lebih terstruktur. Adapun metode analisis yang dilakukan adalah sebagai berikut:

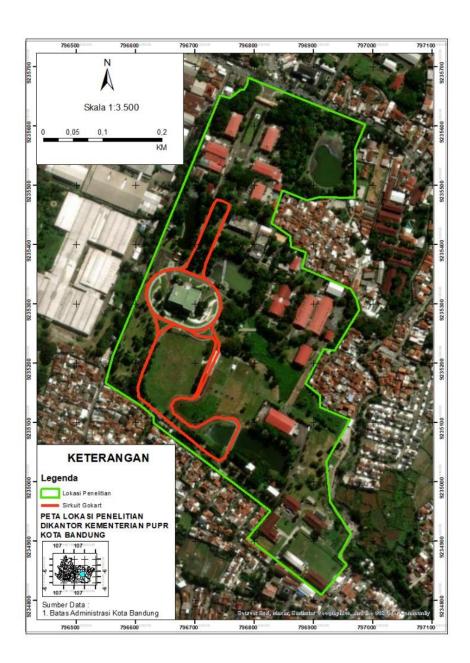

a. Analisis geometrik jalan

Analisis geometrik jalan dilakukan dengan menggunakan data perhitungan geometrik, yang didalamnya terdapat data hasil perhitungan

alinyemen horizontal dan alinyemen vertikal. Perhitungan Alinyemen menggunakan acuan dari pedoman geometerik jalan PUPR, kemudian data tersebut dibandingkan dengan standar sirkuit jalan dari Pedoman Geometrik PUPR dan *National Track Contruction And Safety Guidlines* serta pedoman trek internasional CIK (*Commission International Karting*). Perbandingan tersebut kemudian digunakan untuk menilai kelayakan terhadap standar dan memastikan desain jalan tersebut aman digunakan.

3.5 Kerangka Penelitian

Penggunaan metode penelitian kuantitatif memerlukan analisis yang tepat agar hasil dari proses pengolahan data dapat diterima secara ilmiah. Kerangka pemikiran dalam penelitian analisis geometrik jalan sirkuit gokart disajikan pada gambar dibawah ini.


Gambar 3. 1 Kerangka Pemikiran

3.6 Operasionalisasi penelitian

Operasionalisasi penelitian mencakup tiga aspek utama, yaitu lokasi penelitian, data penelitian, dan jadwal pelaksanaan penelitian. Lokasi penelitian merupakan tempat di mana kegiatan penelitian dilakukan. Data penelitian menjadi komponen utama yang menjadi objek pengamatan dalam penelitian ini. Sementara itu, jadwal pelaksanaan penelitian disusun dalam bentuk rentang waktu tertentu sebagai acuan untuk memastikan kegiatan penelitian berjalan sesuai rencana.

3.7 Lokasi Penelitian

Lokasi Penilitian ini dilakukan di Kecamatan Arcamanik, Kantor Kementerian Pekerjaan Umum Perumahan Rakyat Bandung, yang letak wilayahnya berada di 107°C 36 BT dan 6° 55 LS. Berdasarkan topografi wilayah, Kecamatan Arcamanik berada pada ketinggian ± 700 meter di atas permukaan lau (mdpl) dan terdiri dari empat kelurahan yaitu Kelurahan Cisaranten Kulon, Kelurahan Cisaranten Bina Harapan, Kelurahan Sukamiskin dan Kelurahan Cisaranten Endah.

Gambar 3. 2 Peta Lokasi Penelitian

3.8 Data Penelitian

Pengumpulan data merupakan langkah awal yang penting dalam suatu penelitian sebelum memasuki proses pengolahan dan analisis. Tahapan ini berperan untuk mempermudah pelaksanaan tahap-tahap selanjutnya dalam penelitian. Adapun data yang digunakan dalam penelitian ini meliputi:

 Data DWG perencanaan desain sirkuit gokart dikantor Kementerian PUPR.

Data DWG sirkuit gokart digunakan dalam penelitian ini sebagai data primer kebutuhan penelitian, untuk mengetahui elemen geometrik desain sirkuit yang telah dibuat.

2. Data detail situasi sirkuit gokart Kementerian PUPR.

Data detail situasi digunakan dalam penelitian ini sebagai data primer kebutuhan penelitian untuk sebagai data asbuilt terbangun.

3. Data Pedoman Geometrik Jalan PUPR

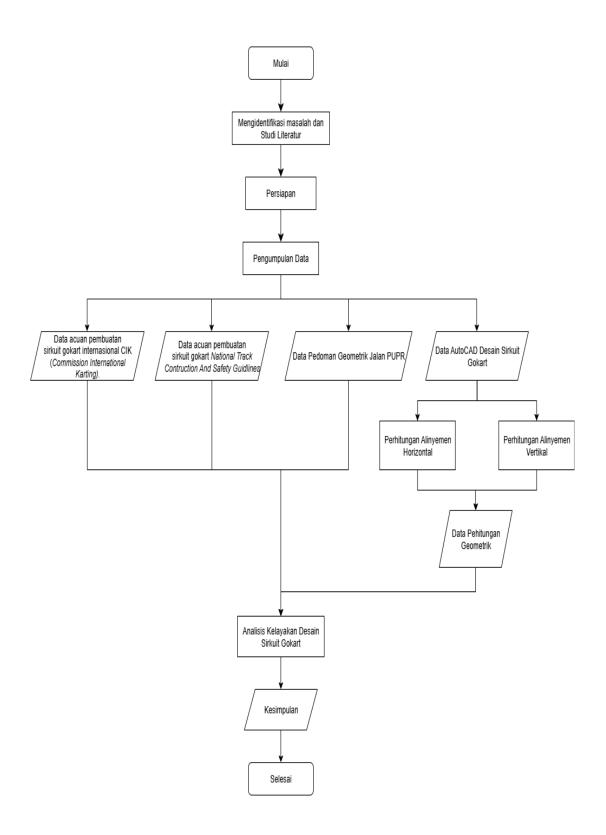
Data Pedoman Geometrik Jalan digunakan sebagai acuan dalam perhitungan alinyemen horizontal dan vertikal, sehingga dapat menghasilkan ukuran yang sesuai dengan pedoman geometrik jalan dari PUPR.

4. Data acuan pembuatan sirkuit gokart, *National Track Contruction And Safety Guidlines*

Data acuan pembuatan sirkuit gokart *National Track Contruction And*Safety Guidlines yang dibuat oleh Australian Karting Association.

Digunakan sebagai acuan pembuatan desain sirkuit gokart dengan

membandingkan hasil perhitungan geometrik dengan acuan yang telah ada.


Data acuan pembuatan sirkuit gokart internasional, Leisure Karting
 Guidlines

Data acuan Leisure Karting Guidlines ini dikeluarkan oleh CIK (Commission International Karting). Digunakan sebagai acuan pembuatan desain sirkuit gokart dengan membandingkan hasil perhitungan geometrik dengan spesifikasi yang dibuat oleh CIK (Commission International Karting).

3.9 Rancangan Penelitian

Desain penelitian merupakan bentuk pengembangan dari kerangka pemikiran yang telah disusun sebelumnya. Kerangka pemikiran tersebut divisualisasikan dalam bentuk diagram alir penelitian, dimulai dari identifikasi permasalahan, studi pustaka, pengumpulan data, pengolahan data, analisis data, hingga penarikan kesimpulan dan penyusunan laporan penelitian.

Langkah awal dalam penelitian ini adalah identifikasi masalah. Permasalahan berangkat dari latar belakang mengenai desain sirkuit gokart yang berpotensi menimbulkan kecelakaan apabila tidak ditinjau kembali secara menyeluruh, sehingga perlu dilakukan penelitian guna menilai ketepatan unsur geometrik yang dirancang. Penelitian ini bertujuan untuk mengevaluasi desain geometrik sirkuit gokart sebagai referensi dalam perancangan sirkuit di tingkat nasional maupun internasional. Rancangan penelitian yang telah disusun penulis dijelaskan secara detail melalui diagram alir berikut.

Gambar 3. 3 Diagram Alir Penelitian

1. Studi Literatur

Studi literatur dilakukan sebagai dasar dalam memahami teori-teori geometrik dalam perancangan sirkuit balap, khususnya gokart. Kajian ini mencakup pedoman desain trek dari federasi balap internasional serta teori tentang alinyemen horizontal dan vertikal. Studi pustaka digunakan untuk meninjau hasil penelitian terdahulu terkait keselamatan dan efisiensi desain sirkuit. Tahapan ini juga mencakup pengumpulan informasi metodologi dari jurnal dan laporan teknis sebagai referensi untuk penyusunan langkah penelitian. Pemahaman yang diperoleh dari literatur menjadi landasan dalam merumuskan masalah dan menentukan pendekatan analisis geometrik pada sirkuit gokart.

2. Tahap Pengumpulan Data

Tahapan ini mencakup pengumpulan data yang dibutuhkan dalam proses analisis dan evaluasi desain sirkuit gokart. Data yang digunakan dalam penelitian ini adalah data pedoman trek sirkuit gokart digunakan sebagai standar acuan teknis dalam menilai kelayakan desain, dan data desain sirkuit gokart beruoa gambar teknis sirkuit yang menjadi objek utama analisis. Pengumpulan data dilakukan secara sistematis untuk memastikan ketersediaan informasi yang cukup dalam proses perhitungan dan evaluasi desain geometrik.

3. Tahap Pengolahan Data

Data yang telah dikumpulkan selanjutnya diolah untuk mendapatkan informasi geometrik yang diperlukan. Langkah-langkah dalam tahap pengolahan data meliputi:

a. Perhitungan Alinyemen Vertikal

Proses perhitungan alinyemen vertikal dimulai dari peninjauan data elevasi dan kemiringan (superelevasi dan grade) berdasarkan profil memanjang sirkuit terutama pada tikungan, kemudian data tersebut dihitung untuk mengetahui elevasi dan kemiringan yang sesuai pada tikungan atau jalan yang akan digunakan.

b. Data Perhitungan Geometrik

Pada tahap ini seluruh data hasil perhitungan alinyemen horizontal dan vertikal diintegrasikan dan diolah untuk memperoleh parameter geometrik secara menyeluruh dari desain sirkuit gokart. Parameter yang dianalisis meliputi panjang lintasan total, radius tikungan, lebar lintasan, sudut belok, kelandaian lintasan (*grade*), serta nilai superelevasi di setiap segmen lintasan. Data ini selanjutnya disusun dalam bentuk tabel dan grafik agar lebih mudah dianalisis.

6. Tahap Analisis Data

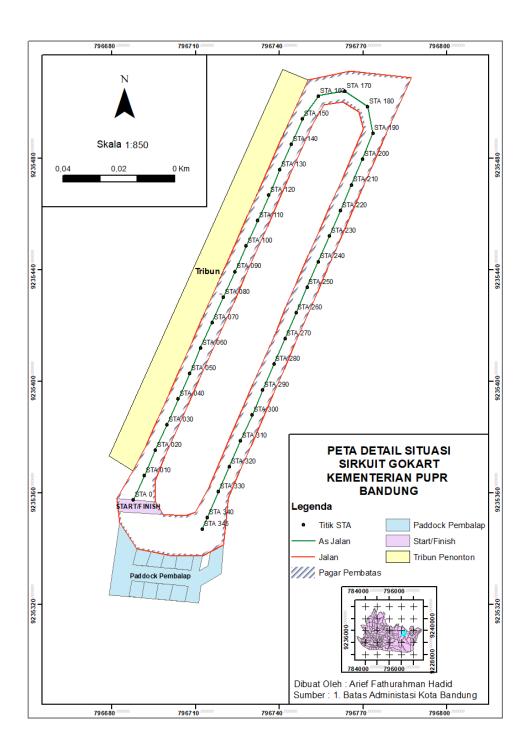
Setelah semua parameter di peroleh, hasil pengolahan data dievaluasi berdasarkan standar atau pedoman teknis yang berlaku, dengan membandingkan dengan standar nasional maupun internasional. Proses perbandingan ini bertujuan untuk mengetahui sejauh mana desain sirkuit telah memenuhi kriteria kelayakan geometrik dan aspek keselamatan bagi pembalap gokart. Jika ditemukan deviasi atau ketidaksesuaian, hal tersebut akan menjadi dasar untuk memberikan rekomendasi perbaikan pada desain sirkuit. Kelayakan dilihat dari kecukupan lebar tikungan, panjang lintasan, lebar jalan, dan faktor keselamatan lainnya. Hasil analisis ini menjadi dasar dalam pengambilan kesimpulan terkait kualitas desain.

BAB 4 HASIL DAN PEMBAHASAN

Penelitian ini dilakukan dengan tujuan untuk mengidentifikasi nilai-nilai parameter geometrik dalam perancangan sirkuit gokart serta mengevaluasi kelayakan desainnya guna meminimalisasi risiko kecelakaan. Data yang digunakan berasal dari hasil perhitungan geometrik yang diperoleh melalui pengolahan alinyemen horizontal dan vertikal pada gambar desain sirkuit gokart (format DWG). Seluruh data tersebut kemudian dianalisis lebih lanjut untuk menguji kelayakan yang telah dirumuskan berdasarkan hasil pengolahan data.

4.1 Pengukuran Detail Situasi

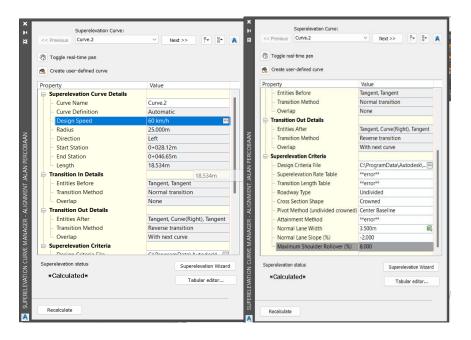
Pengukuran detail situasi dilakukan pada sirkuit gokart yang telah terbangun, dengan tahapan awal berupa *stakeout* terhadap desain rencana untuk mengetahui posisi STA pada lintasan. Dari hasil pengukuran diperoleh luas area sirkuit sebesar 9.734,063 m², sedangkan koordinat lokasi disajikan pada tabel 4.1

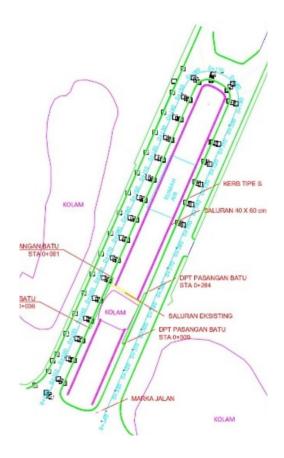

Tabel 4. 1 Koordinat Pengukuran Detail Situasi

Center Line	X	у	z	Left	X	у	z
STA 0	796687.73	9235357.37	708.65	STA 010	796688	9235368	708.579
STA 010	796691.64	9235366.21	708.59	STA 020	796692	9235376.9	708.462
STA 020	796695.65	9235375.29	708.57	STA 030	796696	9235386	708.499
STA 030	796699.74	9235384.46	708.65	STA 040	796700	9235395.2	708.582
STA 040	796703.78	9235393.6	708.69	STA 050	796704	9235404.3	708.592
STA 050	796707.84	9235402.76	708.74	STA 060	796708	9235413.5	708.643
STA 060	796711.89	9235411.9	708.83	STA 070	796712	9235422.6	708.763
STA 070	796715.96	9235421.03	708.9	STA 080	796716	9235431.8	708.821
STA 080	796720.01	9235430.18	708.99	STA 090	796721	9235440.9	708.955
STA 090	796724.09	9235439.33	709.07	STA 100	796725	9235450	708.965
STA 100	796728.11	9235448.45	709.14	STA 110	796729	9235459.2	709.032
STA 110	796732.16	9235457.6	709.23	STA 120	796733	9235468.3	709.133
STA 120	796736.22	9235466.73	709.300	STA 130	796737	9235477.5	709.298
STA 130	796740.26	9235475.87	709.37	STA 140	796741	9235486.7	709.587
STA 140	796744.3	9235485.03	709.42	STA 150	796743	9235486.7	709.412
STA 150	796748.37	9235494.14	709.48	STA 160	796745	9235495.8	709.453
STA 160	796753.97	9235502.21	709.54	STA 170	796750	9235508.1	709.631
STA 170	796763.56	9235503.93	709.37	STA 180	796765	9235511.1	709.452
STA 180	796771.66	9235498.48	709.2	STA 190		9235508.9	709.285
STA 190	796773.55	9235488.91	709.07	STA 200	796778	9235487.9	709.096
STA 200	796769.87	9235479.63	709.02	STA 210	796774	9235478	709.036
STA 210	796765.89	9235470.43	709.03	STA 220	796770	9235468.8	709.035
STA 220	796761.92	9235461.26	708.87	STA 230	796766	9235459.7	708.863
STA 230	796757.94	9235452.08	708.78	STA 240	796762	9235450.5	708.779
STA 240	796753.97	9235442.9	708.73	STA 250	796758	9235441.3	708.779
STA 250	796749.98	9235433.71	708.75	STA 260	796754	9235432.1	708.745
STA 260	796746.04	9235424.53	708.75				
STA 270	796742.07	9235415.36	708.58	STA 270 STA 280	796748 796746	9235418.4 9235413.8	708.732 708.521
STA 280	796738.1	9235406.2	708.46				
STA 290	796734.1	9235497.01	708.41	STA 290	796742	9235404.6	708.453
STA 300	796730.26	9235387.9	708.33	STA 300	796738	9235395.4	708.32
STA 310	796726.15	9235378.69	708.31	STA 310	796734	9235386.3	708.323
STA 320	796722.17	9235369.43	708.26	STA 320	796730	9235377.1	708.285
STA 330	796718.16	9235360.34	708.24	STA 330	796726	9235367.9	708.232
STA 340	796714.23	9235351.14	707.14	STA 340	796722	9235358.7	708.232
STA 345	796712.45	9235347.03	708.17	STA 345	796721	9235348.3	707.131

Tabel 4. 2 Koordinat Pengukuran Detail Situasi (lanjutan)

Right	X	у	z
STA 010 R	796695	9235365	708.552
STA 020 R	796699	9235374	708.532
STA 030 R	796703	9235383	708.632
STA 040 R	796708	9235392	708.621
STA 050 R	796712	9235401	708.71
STA 060 R	796716	9235410	708.756
STA 070 R	796720	9235419	708.854
STA 080 R	796724	9235429	708.926
STA 090 R	796728	9235438	708.954
STA 100 R	796732	9235447	709.086
STA 110 R	796736	9235456	709.122
STA 120 R	796740	9235465	709.289
STA 130 R	796744	9235474	709.353
STA 140 R	796748	9235483	709.387
STA 150 R	796752	9235493	709.427
STA 160 R	796756	9235499	709.498
STA 170 R	796763	9235500	709.353
STA 180 R	796769	9235496	709.186
STA 190 R	796770	9235490	708.962
STA 200 R	796766	9235481	708.988
STA 210 R	796762	9235472	708.975
STA 220 R	796758	9235463	708.832
STA 230 R	796754	9235454	708.721
STA 240 R	796750	9235445	708.711
STA 250 R	796746	9235435	708.7
STA 260 R	796742	9235426	708.73
STA 270 R	796738	9235417	708.528
STA 280 R	796734	9235408	708.416
STA 290 R	796730	9235399	708.387
STA 300 R	796726	9235389	708.311
STA 310 R	796723	9235380	708.282
STA 320 R	796719	9235371	708.213
STA 330 R	796715	9235362	708.212
STA 340 R	796710	9235353	707.117


Berdasarkan hasil pengukuran detail situasi kemudian dibuat peta detail situasi. Pada peta tersebut ditambahkan beberapa infrastruktur pendukung, antara lain tribun penonton, pagar pembatas, serta *paddock* pembalap, sesuai dengan ketentuan yang tercantum dalam *National Track Construction and Safety Guidelines* serta *Leisure Karting Guidelines*. Peta detail situasi dapat dilihat pad gambar 4.1


Gambar 4. 1 Peta Detail Situasi Sirkuit Gokart

4.2 Alinyemen Horizontal

Penelitian mengenai desain geometrik sirkuit gokart ini menekankan pentingnya perhitungan alinyemen horizontal sebagai bagian dari proses perencanaan. Sirkuit yang dirancang memiliki total panjang lintasan 344,743 meter, terdiri atas dua lintasan lurus masing-masing sepanjang 150 meter dan satu segmen tikungan sepanjang 44,743 meter. Lebar lintasan pada bagian lurus adalah 8 meter, sementara pada bagian tikungan melebar menjadi 11 meter. Tikungan tersebut dirancang dengan jari-jari lengkung (radius) sebesar 148 meter. Kecepatan rencana yang digunakan dalam desain ini adalah 60 km/jam. Dapat dilihat pada gambar 4.2

Gambar 4. 2 Kecepatan Rencana dan Superelevasi Maksimal

Gambar 4. 3 Desain Sirkuit Gokart

4.2.1 Kecepatan Maksimum Pada Tikungan

Kecepatan maksimum pada tikungan dihitung berdasarkan rumus diatas, tikungan sirkuit gokart ini terdapat pada STA 0+150 – STA 0+194, dan memiliki super elevasi 1%. Rumus yang digunakan adalah rumus alinyemen horizontal untuk mengukur kecepatan maskimum pada tikungan tersebut, rumus dapat dilihat pada rumus 2.1.

Menentukan kecepatan maksimum V, diketahui R= 148 meter, g= 9,8, dan f= 0,15

$$V = \sqrt{R (g (e + f))}$$

$$V = \sqrt{148 (9,8(1 + 0,15))}$$

$$V = 40,840 \ km/jam$$

Berdasarkan perhitungan kecepatan maksimum diatas, didapatkan bahwa kecepatan maksimum pengemudi saat berada ditikungan yaitu 40,840 km/jam. Yang berarti jika kecepatan rencana pada lintasan sirkuit ini 60 km/jam, maka pengmudi harus mengurangi kecepatan pada saat ditikungan.

4.2.2 Jarak Pandang Henti Minimum

Perhitungan Jarak pandang henti dilakukan untuk untuk menghentikan kendaraanya dengan aman. Jarak pandang henti diukur berdasarkam asumsi bahwa tinggi mata pengemudi adalah 105 cm. Untuk desain geometrik, waktu reaksi pengemudi ditetapkan 2,5 detik dan digunakan sebagai dasar untuk menghitung JPH, perlambatan longitudinal 3,4 m/s, (Pedoman Desain Geometrik Jalan, 2021). Nilai tersebut kemudian dihitung berdasarkan rumus 2.2.

Menentukan jarak pandang henti, diketahui kecepatan rencana (VD) = 60km, T=2,5m/s, a=3,4 detik, Gradien (G) diketahui = 0,006

$$JPH = \frac{VD.T}{3.6} + \frac{VD^2}{2 \times 3.6^2 \times g\left(\frac{a}{g} + G\right)}$$
$$JPH = \frac{60.2.5}{3.6} + \frac{60^2}{2 \times 3.6^2 \times 9.8\left(\frac{3.4}{9.8} + 0.006\right)}$$

$$JPH = \frac{60.2,5}{3,6} + \frac{60^2}{2 \times 3,6^2 \times 9,8 \left(\frac{3,4}{9,8} + 0,006\right)}$$

JPH = 81,821 meter

Berdasarkan tabel jarak pandang henti minimum dengan acuan dasar (Pedoman Desain Geometrik Jalan, 2021), diketahui kecepatan rencana yang digunakan yaitu 60km/jam, minimum Vr =60 km/jam adalah 75 meter, karena desain perencanaan sirkuit mempunyai JPH 81,821 meter. 81,821 > 75, maka JPH pada desain sirkuit gokart dapat digunakan.

4.2.3 Daerah Bebas Samping di Tikungan

Untuk menentukan area bebas samping pada bagian tikungan, diperlukan data radius tikungan sebesar 148 meter serta jarak pandang henti sepanjang 81,821 meter. Area bebas samping ini berfungsi untuk memastikan kelancaran pandangan pengemudi di tikungan dengan cara menyingkirkan hambatan visual sejauh M (meter).

$$M = R \left(1 - Cos \left(\frac{28,65 \cdot JPH}{R} \right) \right)$$

$$M = 148 \left(1 - \cos \left(\frac{28,65 \cdot 81,821}{148} \right) \right)$$

M = 5,619 meter

Pada tikungan di STA 0+150 – STA 0+194, perlunya menghilangkan jarak penghalang sejauh 5,619 meter.

Tabel 4. 3 Alinyemen Horizontal

Alinyemen horizontal pada lintasan desain sirkuit goka		
Panjang Jalan	344,743 meter	
Panjang Trek Lurus	150 meter	
Panjang Tikungan	44,743 meter	
Lebar Jalan	8 meter	
Lebar Jalan ditikungan	11 meter	
Radius Tikungan	148 meter	
Kecepatan Rencana	60 km/jam	
Kecepatan Maksimum ditikungan	40,840 km/jam	
Jarang Pandang Henti	81,821 meter	
Daerah Bebas Samping ditikungan	5,619 meter	

Berdasarkan tabel 4.2 hasil perhitungan alinyemen horizontal pada lintasan desain sirkuit gokart, terlihat bahwa lintasan terdiri dari kombinasi ruas lurus dan tikungan dengan panjang dan radius 148 meter. Trek lurus sepanjang 150 meter memberikan ruang akselerasi bagi kendaraan, sedangkan tikungan dengan radius 148 meter dirancang untuk menjaga stabilitas kendaraan saat berbelok. Perhitungan ini dilakukan untuk memastikan bahwa desain lintasan memenuhi standar keselamatan dan kenyamanan.

4.3 Alinyemen Vertikal

Perencanaan alinyemen vertikal pada desain sirkuit gokart melibatkan analisis gradien atau kemiringan jalan yang berfungsi untuk memastikan kelancaran serta keselamatan lintasan. Dalam perencanaan ini, perubahan elevasi dimulai dari STA 0+000 hingga STA 0+150 dengan selisih ketinggian sebesar 0,828 meter pada lintasan lurus sepanjang 150 meter. Selanjutnya, pada segmen STA 0+150 hingga STA 0+194 terjadi penurunan elevasi sebesar -0,408 meter pada bagian tikungan sepanjang 44,473

meter. Kemudian, dari STA 0+194 hingga STA 0+345 terdapat beda tinggi sebesar - 0,903 meter pada lintasan lurus sejauh 150 meter. Desain sirkuit ini juga dirancang dengan super elevasi maksimum sebesar 8%, sebagaimana ditampilkan pada gambar 4.2, sementara rincian elevasi ditampilkan dalam tabel 4.1.

Perhitungan kemiringan atau gradien pada desain sirkuit gokart dilakukan dengan menggunakan rumus 2.2 gradien, yang melibatkan selisih elevasi dan panjang jalan pada bagian yang dianalisis. Dalam proses perhitungannya, lintasan dibagi menjadi tiga segmen, yakni dua lintasan lurus dan satu segmen tikungan, sehingga tiap bagian dapat dihitung kemiringannya secara terpisah sesuai kondisi geometriknya.

 $\rm STA~0+000-STA~0+150~mempunyai~panjang~150~meter~dan~beda~tinggi~0,828$ meter

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak \ Horizontal} \times 100\%$$

$$Gradien = \frac{0,828}{150} \times 100\%$$

$$\textit{Gradien} = 0.005 \times 100\%$$

$$Gradien = 0.5\%$$

 $\rm STA~0+150-STA~0+194~mempunyai~panjang~44,473~meter~dan~beda tinggi - 0,408~meter$

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak \ Horizontal} \times 100\%$$

$$Gradien = \frac{0,408}{44,473} \times 100\%$$

$$Gradien = 0.009 \times 100\%$$

$$Gradien = -0.9\%$$

STA 0+194 – STA 0+365 mempunyai panjang 150 meter dan beda tinggi - 0,903 meter

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak \ Horizontal} \times 100\%$$

$$Gradien = \frac{0,903}{150} \times 100\%$$

$$Gradien = 0.006 \times 100\%$$

$$Gradien = -0.6\%$$

Dari hasil perhitungan berikut dapat dilihat bahwa gradien yang memiliki nilai plus yang berati elevasi menanjak serta yang memiliki gradien minus memiliki elevasi menurun. Hasil dapat dilihat dari tabel berikut.

Tabel 4. 4 Alinyemen Vertikal

Alinyemen vertikal pada lintasan sirkuit gokart				
STA 0+000-STA 0+150 STA 0+150-STA 0+194 STA 0+194-STA 0+365				
Gradien	0,5%	-0.09%	-0.06%	
Super elevasi desain maksimum	8%	8%	8%	

4.4 Analisis Kelayakan Desain Sirkuit Gokart

Analisis kelayakan desain sirkuit gokart dilakukan dengan menghitung alinyemen horizontal dan vertikal untuk memperoleh data parameter geometrik lintasan secara menyeluruh. Hasil perhitungan ini menjadi dasar penilaian apakah desain sirkuit sudah sesuai dengan standar teknis yang ditetapkan, sehingga mampu meminimalkan risiko kecelakaan dan tetap menghadirkan sensasi balap yang seru

namun aman bagi pembalap. Penyesuaian desain dengan ketentuan teknis menjadi langkah penting agar lintasan tidak hanya menantang, tetapi juga layak dan aman digunakan. Tabel 4.5 dan 4.6 berikut menyajikan hasil perhitungan geometrik sirkuit gokart yang dibandingkan dengan standar persyaratan geometrik untuk pembangunan sirkuit gokart baik pada tingkat nasional maupun internasional.

Tabel 4. 5 Hasil Perbandingan Spesifikasi Sirkuit Nasional

Parameter Geometrik	Perhitungan Geometrik Sirkuit Gokart	Spesifikasi Geometrik Sirkuit Nasional	Kesesuaian
Panjang Lintasan Keseluruhan	344,743 meter	1700 meter atau <2000 meter	Tidak Sesuai
Panjang Trek Lurus	150 meter	<100 meter	Tidak Sesuai
Panjang Tikungan	44,743 meter	-	-
Lebar Jalan	8 meter	>5 m dengan rekomendasi : 6 m, maksimum 7,5 m	Tidak Sesuai
Lebar Jalan di Tikungan	11 meter	>6 m atau 1,5 m lebih lebar dari trek lurus	Sesuai
Radius Tikungan	148 meter	-	-
Kecepatan Rencana	60 km/jam	60 km/jam - 80 km/jam	Sesuai
Kecepatan Maksimum di Tikungan	40,840 km/jam	-	-
Jarak Pandang Henti	81,821 meter	-	-
Daerah Bebas Samping di Tikungan	5,619 meter	-	-
Gradien	0,5%, -0,9%, -0,6%	-	-
Superelevasi Maksimum	8%	rekomendai 5%, maksimum 10%	Sesuai namun direkomendasikan 5%

Tabel 4. 6 Hasil Perbandingan Spesifikasi Sirkuit Internasional

Parameter Geometrik	Perhitungan Geometrik Sirkuit Gokart	Spesifikasi Geometrik Sirkuit Internasional	Kesesuaian
Panjang Lintasan Keseluruhan	344,743 meter	Minimal 800 meter atau Maksimum 1700 meter	Tidak Sesuai
Panjang Trek Lurus	150 meter	120-150 meter	Sesuai
Panjang Tikungan	44,743 meter	-	-
Lebar Jalan	8 meter	Minimal 7 meter untuk sirkuit cepat	Sesuai
Lebar Jalan di Tikungan	11 meter	10 meter sampai 12 meter	Sesuai
Radius Tikungan	148 meter	-	-
Kecepatan Rencana	60 km/jam	80 km/jam - 110 km/jam	Tidak Sesuai
Kecepatan Maksimum di Tikungan	40,840 km/jam	-	-
Jarak Pandang Henti	81,821 meter	-	-
Daerah Bebas Samping di Tikungan	5,619 meter	-	-
Gradien	0,5%, -0,9%, -0,6%	< 5%, dengan gradien rekomendasi 2-3%	Sesuai
Superelevasi Maksimum	8%	rekomendasikan sekitar 5%	Sesuai namun direkomendasikan 5%

BAB 5 KESIMPULAN

Berdasarkan analisis yang telah dilakukan dari penelitian geometrik pada desain sirkuit gokart diperoleh kesimpulan sebagai berikut.

5.1 Kesimpulan

Kesimpulan yang diperoleh dalam penelitian ini yaitu:

- 1. Perencanaan desain sirkuit gokart belum sepenuhnya sesuai dengan standar konstruksi trek nasional maupun pedoman internasional dari CIK-FIA. Beberapa parameter seperti panjang lintasan keseluruhan (344,743 meter) tidak memenuhi ketentuan minimal yang disyaratkan, baik oleh standar nasional (minimal 1700 meter) maupun internasional (minimal 800 meter) dan nilai gradien lintasan masih di luar batas rekomendasi ideal (2–3%) meskipun tidak melampaui maksimum yang diizinkan. Dengan hasil kesimpulan tersebut, sirkuit gokart yang dirancang dinyatakan hanya layak dimanfaatkan sebagai lintasan rekreasi atau sebagai sarana latihan.
- 2. Alinyemen horizontal pada sirkuit ini mencakup panjang trek lurus 150 meter dan tikungan sepanjang 44,743 meter dengan radius tikungan 148 meter, yang menghasilkan kecepatan maksimum di tikungan sebesar 40,840 km/jam. Jarak pandang henti sebesar 81,821 meter telah memenuhi kriteria minimum yang dipersyaratkan, yakni minimal 75 meter pada kecepatan rencana 60 km/jam sesuai pedoman geometrik.

Daerah bebas samping di tikungan yang sebesar 5,619 meter juga telah disediakan, yang bertujuan untuk memberikan ruang bebas dari hambatan visual atau fisik, untuk mengantisipasi kendaraan yang keluar jalur. Alinyemen vertikal, yang mencakup gradien dan superelevasi, menunjukkan bahwa gradien berkisar antara 0,5% hingga -0,9%, yang berarti lintasan memiliki kemiringan naik turun ringan. Sedangkan superelevasi sebesar 8%, masih dalam batas maksimum (10%) meskipun direkomendasikan 5%, sehingga tetap dinilai layak secara teknis.

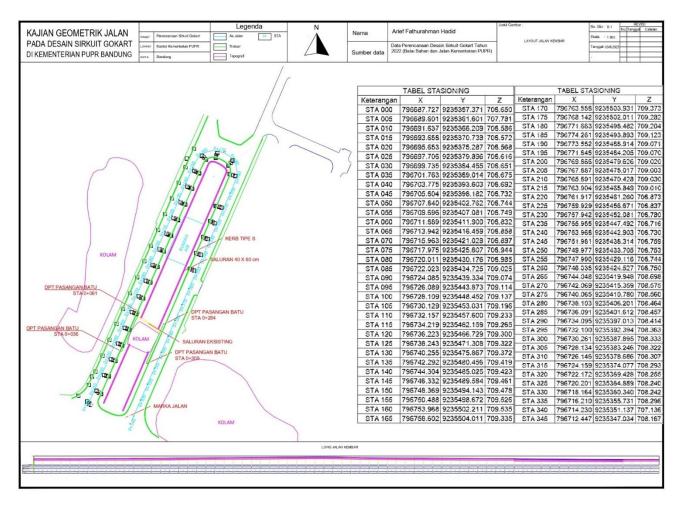
5.2 Saran

Saran yang diberikan penulis bagi penelitian selanjutnya yaitu:

- 1. Perlu dilakukan pengembangan terhadap desain geometrik sirkuit gokart, terutama pada aspek yang belum memenuhi standar nasional dan internasional, seperti panjang lintasan keseluruhan yang masih jauh di bawah standar (minimal 800 meter untuk FIA dan 1700 meter untuk nasional). Penyesuaian ini penting agar sirkuit dapat digunakan dalam kejuaraan resmi dan memenuhi syarat pembuatan sirkuit gokart.
- 2. Meskipun beberapa parameter seperti lebar jalan, lebar tikungan, radius tikungan, dan kecepatan rencana telah sesuai dengan standar teknis internasional, disarankan melakukan penyesuaian terhadap spesifikasi geometrik yang masih belum memenuhi standar agar sirkuit gokart dapat digunakan dalam kejuaraan internasional maupun nasional. Serta melakukan pembebasan di samping tikungan sejauh 5,619 meter.

DAFTAR PUSTAKA

- Aldrin V Ferdinandus, N. L. (2017). Perencanaan Geometrik Jalan dan Tebal Perkerasan (Analisa Komponen Method) Pada Ruas Jalan Masiwang Airnanang Kabupaten Seram Bagian Timur Sta 40 + 000 43 + 000. *Jurnal Manumata Vol 3, No 1*, 1.
- Andi Ibrahim Yunus, F. R. (2023). *Perencanaan Geometrik Jalan*. Padang: Get Press Indonesia Anggota IKAPI No. 033/SBA.
- Association, A. K. (Version 5 Updated October 2016). National Track Contruction and Safety Guidlines. *Australian Karting Association Ltd T/A Karting Australia*.
- Balaka, M. Y. (2022). *Metodologi Penelitian Kuantitatif*. Bandung: Widina Bhakti Persada.
- Commission Internationale Karting-FIA. (2023). Leisure Karting Guidlines. Fédération Internationale de l'Automobile.
- Djoko Purwanto, A. K. (2015). Hubungan antara Kecepatan dan Kondisi Geometrik


 Jalan yang Berpotensi Menyebabkan Kecelakaan Lalu Lintas pada Tikungan. *Jurnal MKTS, Jurnal Ilmu Terapan Bidang Teknik sipil Vol 21, No. 2*, 84.
- Dr. Abdul Muin, M. M. (2023). *Buku Ajar Metode Penelitian Kuantitatif.* Kota Malang: CV. Literasi Nusantara Abadi.
- Dr. Mukhtar Lutfie, S. M. (2024). *Geometrik Jalan*. Grup Penerbitan CV Tahta Media Grup.

- Ega Gumilar Hafiz, M. A. (2014). Analisis Pengaruh Panjang Baseline Terhadap Ketelitian Pengukuran Situasi Dengan Menggunakan GNSS Metode RTK-NTRIP (Studi Kasus: Semarang, Kab. Kendal dan Boyolali). *Program Studi Teknik Geodesi, Fakultas Teknik, Universitas Diponegoro, Jurnal Geodesi Undip.*
- Eric Kusidy. (2023). Perancangan Sirkuit Karting Medan Dengan Pendekatan Arsitektur Post-Modern. *Jurnal Ruang Luar dan Dalam FTSP Vol.05 No.01*. Hizkia Davidson A. Milla, D. W. (2024). Pengembangan Perhitungan Alinyemen Horizontal dan Alinyemen Vertikal Antar Kota Berbasis Android . *Jurnal Forum Teknik Sipil, Vol. 4 No.1*, 73.
- Marga, K. P. (2021). Pedoman Desain Geometrik Jalan. *Surat edaran Nomor:* 20/SE/Db.
- Mochammad Qomaruddin, S. Y. (2016). Analisis alinyemen horizontal pada tikungan depan gardu PLN Ngabul di Kabupaten Jepara. *Jurnal DISPROTEK Volume 7* no.2.
- Nazaruddin, D. M. (2020). Design and manufacture chassis and body of simple gokart using automatic clutch and 7.5 hp engine power. *JurusanTeknik Mesin*, *FakultasTeknik, Universitas Riau*, 1.
- Prima Juanita Romadhona, M. R. (2016). Evaluasi dan perbaikan geometri jalan pada ruas jalan Magelang Yogyakarta km 22 22,6. *Jurnal Teknisia, Volume XXI,* No. 2, Program Studi Teknik Sipil, Universitas Islam Indonesia, Yogyakarta, Indonesia.
- Pujiastutie, E. T. (2006). Pengaruh geometrik jalan terhadap kecelakaan lalu lintas di

- jalan tol (studi kasus tol Semarang dan tol Cikampek). Tesis, 15.
- Rindu Twidi Bethary, M. F. (2016). Perencanaan geometrik jalan alternatif Palima-Curug (studi kasus: Kota Serang). *Jurnal Fondasi, Volume 5 No 2*, 2.
- Sofwatillah. (2024). Teknik analisis data kuantitatif dan kualitatif dalam penelitian ilmiah. *Journal Genta Mulia Volume 15, Number 2, pp. 79-91*.
- Sukirman, S. (1999). Dasar-dasar Perencanaan Geometrik Jalan. Bandung: Nova.
- Tata Cara Perencanaan Geometrik Jalan Antar Kota. (No. 038/TBM/1997). Direktorat Jenderal Bina Marga.

LAMPIRAN

Lampiran 1 Peta Desain Sirkuit Gokart

Lampiran 2 Hasil Spesifikasi Geometrik Sirkuit Nasional

Parameter Geometrik	Perhitungan Geometrik Sirkuit Gokart	Spesifikasi Geometrik Sirkuit Nasional	Kesesuaian
Panjang Lintasan Keseluruhan	344,743 meter	1700 meter atau <2000 meter	Tidak Sesuai
Panjang Trek Lurus	150 meter	<100 meter	Tidak Sesuai
Panjang Tikungan	44,743 meter	-	-
Lebar Jalan	8 meter	>5 m dengan rekomendasi : 6 m, maksimum 7,5 m	Tidak Sesuai
Lebar Jalan di Tikungan	11 meter	>6 m atau 1,5 m lebih lebar dari trek lurus	Sesuai
Radius Tikungan	148 meter	-	-
Kecepatan Rencana	60 km/jam	60 km/jam - 80 km/jam	Sesuai
Kecepatan Maksimum di Tikungan	40,840 km/jam	-	-
Jarak Pandang Henti	81,821 meter	-	-
Daerah Bebas Samping di Tikungan	5,619 meter	-	-
Gradien	0,5%, -0,9%, -0,6%	-	-
Superelevasi Maksimum	8%	rekomendai 5%, maksimum 10%	Sesuai namun direkomendasikan 5%

Lampiran 3 Hasil Spesifikasi Geometrik Sirkuit Internasional

Parameter Geometrik	Perhitungan Geometrik Sirkuit Gokart	Spesifikasi Geometrik Sirkuit Internasional	Kesesuaian
Panjang Lintasan Keseluruhan	344,743 meter	Minimal 800 meter atau Maksimum 1700 meter	Tidak Sesuai
Panjang Trek Lurus	150 meter	120-150 meter	Sesuai
Panjang Tikungan	44,743 meter	-	-
Lebar Jalan	8 meter	Minimal 7 meter untuk sirkuit cepat	Sesuai
Lebar Jalan di Tikungan	11 meter	10 meter sampai 12 meter	Sesuai
Radius Tikungan	148 meter	-	-
Kecepatan Rencana	60 km/jam	80 km/jam - 110 km/jam	Tidak Sesuai
Kecepatan Maksimum di Tikungan	40,840 km/jam	-	-
Jarak Pandang Henti	81,821 meter	-	-
Daerah Bebas Samping di Tikungan	5,619 meter	-	-
Gradien	0,5%, -0,9%, -0,6%	< 5%, dengan gradien rekomendasi 2-3%	Sesuai
Superelevasi Maksimum	8%	rekomendasikan sekitar 5%	Sesuai namun direkomendasikan 5%

KAJIAN GEOMETRIK JALAN PADA DESAIN SIRKUIT GOKART DI KEMENTERIAN PUPR BANDUNG

(Studi Kasus: Sirkuit Gokart Kementerian PUPR, Kecamatan Arcamanik, Bandung)

Arief Fathurahman Hadid¹, Ir. Achmad Ruchlihadiana Tisnasendjaja, ST. MM²

¹Mahasiswa Teknik Geodesi Universitas Winaya Mukti, Bandung

²Dosen Pembimbing 1 Teknik Geodesi Universitas Winaya Mukti, Bandung

Abstrak

Penelitian ini bertujuan untuk menganalisis kesesuaian perencanaan desain sirkuit gokart di lingkungan kantor Kementerian PUPR Bandung berdasarkan parameter geometrik yang dibandingkan dengan standar konstruksi trek gokart nasional dan pedoman internasional CIK-FIA (Commission Internationale de Karting).

Penelitian dilakukan dengan pendekatan kuantitatif melalui perhitungan geometrik pada alinyemen horizontal dan vertikal, meliputi panjang lintasan, radius tikungan, lebar jalan, gradien, superelevasi, kecepatan rencana, jarak pandang henti, dan daerah bebas samping. Hasil analisis menunjukkan bahwa beberapa parameter seperti panjang trek lurus, lebar jalan, lebar tikungan, serta nilai superelevasi telah sesuai dengan standar internasional.

Panjang lintasan keseluruhan (344,743 meter) tidak memenuhi ketentuan minimal yang disyaratkan oleh standar nasional maupun internasional. Dengan demikian, sirkuit ini belum layak untuk digunakan dalam kejuaraan resmi dan hanya dapat direkomendasikan untuk kegiatan latihan atau rekreasi berskala lokal. Penelitian ini menyarankan adanya penyesuaian trase lintasan dan koreksi pada gradien agar sirkuit dapat memenuhi standar internasional dan nasional resmi

Kata kunci: sirkuit gokart, perencanaan geometrik, alinyemen, standar FIA

Abstract

This study aims to analyze the suitability of the go-kart circuit design planning at the Ministry of Public Works and Housing (PUPR) office in Bandung, based on geometric parameters compared to the national go-kart track construction standards and international guidelines set by the CIK-FIA (Commission Internationale de Karting).

The research was conducted using a quantitative approach through geometric calculations on both horizontal and vertical alignments, covering aspects such as track length, curve radius, track width, gradient, superelevation, design speed, stopping sight distance, and lateral clearance. The analysis results indicate that several parameters, such as straight track length, track width, curve width, and superelevation, comply with international standards.

The total track length (344.743 meters) values do not meet the minimum requirements stipulated by either national or international standards. Therefore, the circuit is not yet suitable for official championships and is only recommended for training or local-scale recreational activities. This study recommends adjustments to the track alignment and corrections to the gradient to meet the official national or international standards.

Keywords: go-kart circuit, geometric planning, alignment, FIA standards

1. PENDAHULUAN

Gokart atau balapan Kart atau karting adalah varian dari olahraga bermotor atap terbuka sederhana dan kecil, kendaraan roda empat disebut karts, gokart, atau gearbox/shifter karts tergantung pada desain. Mereka biasanya berpacu di sirkuit skala kecil. Gokart dalam taman hiburan mungkin terbatas pada kecepatan yang tidak lebih dari 60 km/jam. (Nazaruddin, 2020). Dengan kecepatan seperti itu kecelakaan dalam gokart sangat sulit untuk dihindari apabila kondisi jalan yang tidak aman, sehingga perlu dilakukannya analisis geometrik untuk desain sirkuit gokart.

Perencanaan Geometrik ialan merupakan salah satu persyaratan dari perencanaan jalan yang merupakan rancangan arah dan visualisasi dari trase jalan agar jalan memenuhi persyaratan selamat, aman, nyaman, efisien. Dalam pembuatan sirkuit gokart geometrik jalan harus diperhatikan untuk menghindari kecelakaan yang dapat terjadi. (Pujiastutie, 2006). Penggunaan kajian geometrik pada jalan dapat menjadi suatu acuan dalam perencanaan geometrik tikungan yang aman dan nyaman, yang disebut sebagai kecepatan rencana. Dengan kata lain, apabila seorang pengemudi berjalan sesuai kecepatan dengan rencana, maka pengemudi tersebut akan dapat melintasi

tikungan dengan aman dan nyaman. Akan tetapi, apabila kecepatan yang digunakan tidak sesuai, terutama bila terlalu tinggi di atas kecepatan rencana yang digunakan, maka pengemudi tersebut tidak akan merasa nyaman saat melintasi tikungan, bahkan bisa menjadi tidak aman, sehingga berpotensi menimbulkan kecelakaan. (Djoko Purwanto, 2015)

Kondisi jalan yang tidak sesuai dan dipaksakan cenderung akan mempengaruhi tidak nyamannya pengguna sirkuit gokart untuk melintasi jalan, produktivitas umur jalan menurun, dan berpotensi menimbulkan kecelakaan. Oleh karena itu penelitian ini melakukan pengkajian geometrik jalan pada sirkuit gokart di Kementerian PUPR Bandung. Tujuan dari penelitian ini adalah untuk mendapatkan radius minimal tikungan, gradien maksimum, lebar tikungan dan panjang jalan yang dibuat sesuai dengan standarisasi, dengan menggunakan acuan dari National Track Contruction And Safety Guidlinesc dan acuan sirkuit internasional, Leisure Karting Guidline CIK (Commission International Karting) serta Pedoman Geometrik Jalan PUPR

2. METODE PENELITIAN

Dalam penyusunan penelitian ini dilakukan metode penelitian kuantitatif. Metode yang dilalukan dalam tahapan pengumpulan data berupa data sekunder dan data primer. Data primer adalah data basis atau utama yang digunakan dalam penelitian sedangkan, data sekunder adalah informasi yang dikumpulkan dari sumber-sumber yang telah ada. Lokasi Penilitian ini dilakukan di Kecamatan Arcamanik, Kantor Kementerian Pekerjaan Umum Perumahan Rakyat Bandung, yang letak wilayahnya berada di 107°C 36 BT dan 6° 55 LS.

Gambar 1. Lokasi Penelitian

Metode pengolahan data yang dilakukan dalam penelitian ini menggunakan bantuan perangkat lunak *Autocad* dan *Microsoft Excel*. Adapun uraian dalam pengolahan data penelitian ini adalah sebagai berikut:

 Pengolahan data desain sirkuit gokart menggunakan perangkat lunak Autocad. Data desain sirkuit gokart

- dimanfaatkan dalam mengidentifikasi elemen geometrik seperti lebar jalan, titik lengkung horizontal, radius tikungan, elevasi jalan pada tikungan dan panjang jalan serta tikungan yang digunakan dalam desain sirkuit gokart. untuk mengetahui data geometrik yang dibutuhkan dalam perhitungan alinyemen horizontal dan vertikal.
- 2. Proses pengolahan data ini untuk diuji kelayakan menggunakan data pedoman pembuatan jalan sirkuit gokart yang mengacu pada Pedoman Geometrik Jalan PUPR dan National Track Contruction And Safety Guidlines serta pedoman trek internasional CIK (Commission International Karting). Pengolahan data geometrik alinyemen horizontal dan vertikal ini menggunakan perangkat lunak Microsoft Excel, dengan menghitung gradien pada setiap tikungan, kecepatan maksimum berdasarkan sentrifugal, jarak pandang henti, dan daerah bebas samping di tikungan.

3. HASIL DAN PEMBAHASAN

Penelitian ini dilakukan dengan tujuan mengidentifikasi untuk nilai-nilai parameter geometrik dalam perancangan mengevaluasi gokart serta kelayakan desainnya guna meminimalisasi risiko kecelakaan. Data yang digunakan berasal dari hasil perhitungan geometrik pengolahan diperoleh melalui alinyemen horizontal dan vertikal pada gambar desain sirkuit gokart (format DWG). Seluruh data tersebut kemudian dianalisis lebih lanjut untuk menguji kelayakan yang telah dirumuskan berdasarkan hasil pengolahan data

3

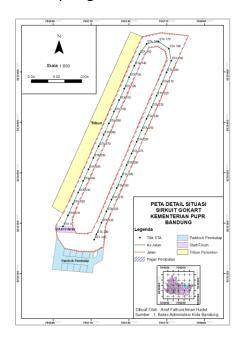
Hasil Pengukuran Detail Situasi

Pengukuran detail situasi dilakukan pada sirkuit gokart yang telah terbangun, dengan tahapan awal berupa *stakeout* terhadap desain rencana untuk mengetahui posisi STA pada lintasan. Dari hasil pengukuran diperoleh luas area sirkuit sebesar 9.734,063 m², sedangkan koordinat lokasi disajikan pada tabel 1,2 dan 3.

Tabel 1. Koordinat Center Line Jalan

Center Line	X	у	z
STA 0	796687.73	9235357.37	708.65
STA 010	796691.64	9235366.21	708.59
STA 020	796695.65	9235375.29	708.57
STA 030	796699.74	9235384.46	708.65
STA 040	796703.78	9235393.6	708.69
STA 050	796707.84	9235402.76	708.74
STA 060	796711.89	9235411.9	708.83
STA 070	796715.96	9235421.03	708.9
STA 080	796720.01	9235430.18	708.99
STA 090	796724.09	9235439.33	709.07
STA 100	796728.11	9235448.45	709.14
STA 110	796732.16	9235457.6	709.23
STA 120	796736.22	9235466.73	709.300
STA 130	796740.26	9235475.87	709.37
STA 140	796744.3	9235485.03	709.42
STA 150	796748.37	9235494.14	709.48
STA 160	796753.97	9235502.21	709.54
STA 170	796763.56	9235503.93	709.37
STA 180	796771.66	9235498.48	709.2
STA 190	796773.55	9235488.91	709.07
STA 200	796769.87	9235479.63	709.02
STA 210	796765.89	9235470.43	709.03
STA 220	796761.92	9235461.26	708.87
STA 230	796757.94	9235452.08	708.78
STA 240	796753.97	9235442.9	708.73
STA 250	796749.98	9235433.71	708.75
STA 260	796746.04	9235424.53	708.75
STA 270	796742.07	9235415.36	708.58
STA 280	796738.1	9235406.2	708.46
STA 290	796734.1	9235497.01	708.41
STA 300	796730.26	9235387.9	708.33
STA 310	796726.15	9235378.69	708.31
STA 320	796722.17	9235369.43	708.26
STA 330	796718.16	9235360.34	708.24
STA 340	796714.23	9235351.14	707.14
STA 345	796712.45	9235347.03	708.17

Tabel 2 Koordinat Kiri Jalan


Left x y z STA 010 796688 9235368 708.579 STA 020 796692 9235376.9 708.462 STA 030 796696 9235386 708.499 STA 040 796700 9235395.2 708.582 STA 050 796704 9235404.3 708.592 STA 060 796708 9235413.5 708.643 STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450. 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796731 9235486.7 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 170 796750 9235508.1 709.631 STA 180 <th></th> <th></th> <th>ı</th> <th>1</th>			ı	1
STA 020 796692 9235376.9 708.462 STA 030 796696 9235386 708.499 STA 040 796700 9235395.2 708.582 STA 050 796704 9235404.3 708.592 STA 060 796708 9235413.5 708.643 STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450. 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235477.5 709.298 STA 130 796737 9235486.7 709.298 STA 140 796741 9235486.7 709.492 STA 150 796743 9235486.7 709.453 STA 170 796750 9235508.1 709.631 STA 210 796778 9235487.9 709.096 STA 210 796778 9235487.9 709.036 <tr< td=""><td>Left</td><td>X</td><td>у</td><td>Z</td></tr<>	Left	X	у	Z
STA 030 796696 9235386 708.499 STA 040 796700 9235395.2 708.582 STA 050 796704 92353404.3 708.592 STA 060 796708 9235404.3 708.643 STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235486.3 709.133 STA 130 796737 9235486.7 709.298 STA 140 796741 9235486.7 709.298 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 210 796778 9235487.9 709.096 STA 210 796774 9235487.9 709.036 <tr< td=""><td>STA 010</td><td>796688</td><td>9235368</td><td>708.579</td></tr<>	STA 010	796688	9235368	708.579
STA 040 796700 9235395.2 708.582 STA 050 796704 9235404.3 708.592 STA 060 796708 92354013.5 708.643 STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450. 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235486.7 709.298 STA 140 796741 9235486.7 709.412 STA 150 796743 9235486.7 709.453 STA 170 796750 9235495.8 709.453 STA 180 796765 9235508.1 709.631 STA 210 796778 9235487.9 709.096 STA 210 796774 9235487.9 709.036 STA 220 796770 9235468.8 709.035	STA 020	796692	9235376.9	708.462
STA 050 796704 9235404.3 708.592 STA 060 796708 9235413.5 708.643 STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450. 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235486.7 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235508.1 709.096 STA 200 796787 9235487.9 709.096 STA 210 796774 9235487.9 709.036 STA 230 796766 9235459.7 708.863 <	STA 030	796696	9235386	708.499
STA 060 796708 9235413.5 708.643 STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235495.8 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235508.9 709.285 STA 200 796787 9235487.9 709.096 STA 210 796774 9235488.8 709.036 STA 230 796766 9235495. 708.863 STA 240 796762 9235459.7 708.863 <tr< td=""><td>STA 040</td><td>796700</td><td>9235395.2</td><td>708.582</td></tr<>	STA 040	796700	9235395.2	708.582
STA 070 796712 9235422.6 708.763 STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235495.8 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235508.9 709.285 STA 200 796787 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235450.5 708.779 STA 250 796758 9235441.3 708.738	STA 050	796704	9235404.3	708.592
STA 080 796716 9235431.8 708.821 STA 090 796721 9235440.9 708.955 STA 100 796725 9235450 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235508.9 709.285 STA 200 796787 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796762 9235459.7 708.863 STA 240 796762 923549.5 708.779 STA 250 796758 9235432.1 708.745	STA 060	796708	9235413.5	708.643
STA 090 796721 9235440.9 708.955 STA 100 796725 9235450 708.965 STA 110 796725 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 200 796787 9235508.9 709.285 STA 200 796788 9235478. 709.096 STA 210 796774 9235478. 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235479.7 708.863 STA 240 796762 9235413.3 708.738 STA 270 796748 9235413.4 708.732	STA 070	796712	9235422.6	708.763
STA 100 796725 9235450 708.965 STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796787 9235478 709.096 STA 210 796774 9235478 709.036 STA 230 796764 9235478 709.035 STA 240 796762 9235468.8 709.035 STA 240 796762 9235459.7 708.863 STA 250 796758 9235413.3 708.779 STA 260 796754 9235432.1 708.745	STA 080	796716	9235431.8	708.821
STA 110 796729 9235459.2 709.032 STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235468.8 709.036 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521	STA 090	796721	9235440.9	708.955
STA 120 796733 9235468.3 709.133 STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 300 796738 9235404.6 708.453	STA 100	796725	9235450	708.965
STA 130 796737 9235477.5 709.298 STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 300 796738 9235404.6 708.453 <t< td=""><td>STA 110</td><td>796729</td><td>9235459.2</td><td>709.032</td></t<>	STA 110	796729	9235459.2	709.032
STA 140 796741 9235486.7 709.587 STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235450.5 708.779 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 300 796738 9235404.6 708.453 STA 310 796734 9235386.3 708.323 <t< td=""><td>STA 120</td><td>796733</td><td>9235468.3</td><td>709.133</td></t<>	STA 120	796733	9235468.3	709.133
STA 150 796743 9235486.7 709.412 STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235432.1 708.745 STA 270 796748 9235432.1 708.745 STA 270 796748 9235413.4 708.732 STA 280 796746 9235413.8 708.521 STA 300 796734 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 <tr< td=""><td>STA 130</td><td>796737</td><td>9235477.5</td><td>709.298</td></tr<>	STA 130	796737	9235477.5	709.298
STA 160 796745 9235495.8 709.453 STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796726 9235358.7 708.232 <td>STA 140</td> <td>796741</td> <td>9235486.7</td> <td>709.587</td>	STA 140	796741	9235486.7	709.587
STA 170 796750 9235508.1 709.631 STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796726 9235358.7 708.232	STA 150	796743	9235486.7	709.412
STA 180 796765 9235511.1 709.452 STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235418.4 708.732 STA 300 796738 9235404.6 708.453 STA 310 796734 9235395.4 708.32 STA 320 796730 9235377.1 708.285 STA 340 796726 9235358.7 708.232 STA 340 796722 9235358.7 708.232	STA 160	796745	9235495.8	709.453
STA 190 796787 9235508.9 709.285 STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 300 796738 9235404.6 708.453 STA 310 796734 9235386.3 708.32 STA 320 796730 9235377.1 708.285 STA 340 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 170	796750	9235508.1	709.631
STA 200 796778 9235487.9 709.096 STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 300 796738 9235404.6 708.453 STA 310 796734 9235386.3 708.32 STA 320 796730 9235377.1 708.285 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 180	796765	9235511.1	709.452
STA 210 796774 9235478 709.036 STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796722 9235358.7 708.232	STA 190	796787	9235508.9	709.285
STA 220 796770 9235468.8 709.035 STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796722 9235358.7 708.232	STA 200	796778	9235487.9	709.096
STA 230 796766 9235459.7 708.863 STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.232 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 210	796774	9235478	709.036
STA 240 796762 9235450.5 708.779 STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.232 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 220	796770	9235468.8	709.035
STA 250 796758 9235441.3 708.738 STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796722 9235358.7 708.232 STA 340 796722 9235358.7 708.232	STA 230	796766	9235459.7	708.863
STA 260 796754 9235432.1 708.745 STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796722 9235358.7 708.232 STA 340 796722 9235358.7 708.232	STA 240	796762	9235450.5	708.779
STA 270 796748 9235418.4 708.732 STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 340 796722 9235358.7 708.232 STA 340 796722 9235358.7 708.232	STA 250	796758	9235441.3	708.738
STA 280 796746 9235413.8 708.521 STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 260	796754	9235432.1	708.745
STA 290 796742 9235404.6 708.453 STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 270	796748	9235418.4	708.732
STA 300 796738 9235395.4 708.32 STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 280	796746	9235413.8	708.521
STA 310 796734 9235386.3 708.323 STA 320 796730 9235377.1 708.285 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 290	796742	9235404.6	708.453
STA 320 796730 9235377.1 708.285 STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 300	796738	9235395.4	708.32
STA 330 796726 9235367.9 708.232 STA 340 796722 9235358.7 708.232	STA 310	796734	9235386.3	708.323
STA 340 796722 9235358.7 708.232	STA 320	796730	9235377.1	708.285
7	STA 330	796726	9235367.9	708.232
STA 345 796721 9235348.3 707.131	STA 340	796722	9235358.7	708.232
2000.000 7,07,101	STA 345	796721	9235348.3	707.131

Tabel 3 Koordinat Kanan Jalan

Right	x	y	z
STA 010 R	796695	9235365	708.552
STA 020 R	796699	9235374	708.532
STA 030 R	796703	9235383	708.632
STA 040 R	796708	9235392	708.621
STA 050 R	796712	9235401	708.71
STA 060 R	796716	9235410	708.756
STA 070 R	796720	9235419	708.854
STA 080 R	796724	9235429	708.926
STA 090 R	796728	9235438	708.954
STA 100 R	796732	9235447	709.086
STA 110 R	796736	9235456	709.122
STA 120 R	796740	9235465	709.289
STA 130 R	796744	9235474	709.353
STA 140 R	796748	9235483	709.387
STA 150 R	796752	9235493	709.427
STA 160 R	796756	9235499	709.498
STA 170 R	796763	9235500	709.353
STA 180 R	796769	9235496	709.186
STA 190 R	796770	9235490	708.962
STA 200 R	796766	9235481	708.988
STA 210 R	796762	9235472	708.975
STA 220 R	796758	9235463	708.832
STA 230 R	796754	9235454	708.721
STA 240 R	796750	9235445	708.711
STA 250 R	796746	9235435	708.7
STA 260 R	796742	9235426	708.73
STA 270 R	796738	9235417	708.528
STA 280 R	796734	9235408	708.416
STA 290 R	796730	9235399	708.387
STA 300 R	796726	9235389	708.311
STA 310 R	796723	9235380	708.282
STA 320 R	796719	9235371	708.213
STA 330 R	796715	9235362	708.212
STA 340 R	796710	9235353	707.117

Berdasarkan hasil pengukuran detail situasi kemudian dibuat peta detail situasi. Pada peta tersebut ditambahkan beberapa infrastruktur pendukung, antara lain tribun penonton, pagar pembatas, serta paddock pembalap, sesuai dengan ketentuan yang tercantum dalam National Track Construction and Safety Guidelines serta Leisure Karting

Guidelines. Guidlines. Peta detail situasi dapat dilihat pad gambar 2.

Gambar 2 Peta Detail Situasi Sirkuit Gokart

Hasil Perhitungan Alinyemen Horizontal

Penelitian mengenai desain geometrik sirkuit gokart ini menekankan pentingnya perhitungan alinyemen horizontal sebagai bagian dari proses perencanaan. Sirkuit yang dirancang memiliki total panjang lintasan 344,743 meter, terdiri atas dua lintasan lurus masing-masing sepanjang 150 meter dan satu segmen tikungan sepanjang 44,743 meter. Lebar lintasan pada bagian lurus adalah 8 meter, sementara pada bagian tikungan melebar menjadi 11 meter. Tikungan tersebut dirancang dengan jari-jari lengkung (radius) sebesar 148 meter. Kecepatan rencana yang digunakan dalam desain ini adalah 60 km/jam.

Kecepatan maksimum pada tikungan dihitung berdasarkan rumus diatas, tikungan sirkuit gokart ini terdapat pada STA 0+150 – STA 0+194, dan memiliki super elevasi 1%. Rumus yang digunakan adalah rumus alinyemen horizontal untuk mengukur kecepatan maskimum pada tikungan tersebut.

Menentukan kecepatan maksimum V, diketahui R= 148 meter, g= 9,8, dan f= 0,15

$$V = \sqrt{R (g (e + f))}$$

$$V = \sqrt{148 (9,8(1 + 0,15))}$$

$$V = 40,840 \ km/jam$$

Berdasarkan perhitungan kecepatan maksimum diatas, didapatkan bahwa kecepatan maksimum pengemudi saat berada ditikungan yaitu 40,840 km/jam. Yang berarti jika kecepatan rencana pada lintasan sirkuit ini 60 km/jam, maka pengmudi harus mengurangi kecepatan pada saat ditikungan.

Perhitungan Jarak pandang henti dilakukan untuk untuk menghentikan kendaraanya dengan aman. Jarak pandang henti diukur berdasarkam asumsi bahwa tinggi mata pengemudi adalah 105 cm. Untuk desain geometrik, waktu reaksi pengemudi ditetapkan 2,5 detik dan digunakan sebagai dasar untuk menghitung JPH, perlambatan longitudinal 3,4 m/s, (Pedoman Desain Geometrik Jalan, 2021).

Menentukan jarak pandang henti, diketahui kecepatan rencana (VD) = 60km, T=2,5m/s, a=3,4 detik, Gradien (G) diketahui = 0,006

$$JPH = \frac{VD.T}{3.6} + \frac{VD^2}{2 \times 3.6^2 \times g\left(\frac{a}{g} + G\right)}$$

$$JPH = \frac{60.2,5}{3,6} + \frac{60^2}{2 \times 3,6^2 \times 9,8 \left(\frac{3,4}{9.8} + 0,006\right)}$$

JPH = 81,821 meter

Berdasarkan tabel jarak pandang henti minimum dengan acuan dasar (Pedoman Desain Geometrik Jalan, 2021), diketahui kecepatan rencana yang digunakan yaitu 60km/jam, minimum Vr =60 km/jam adalah 75 meter, karena desain perencanaan sirkuit mempunyai JPH 81,821 meter. 81,821 > 75, maka JPH pada desain sirkuit gokart dapat digunakan.

Untuk menentukan area bebas samping pada bagian tikungan, diperlukan data radius tikungan sebesar 148 meter serta jarak pandang henti sepanjang 81,821 meter. Area bebas samping ini berfungsi untuk memastikan kelancaran pandangan pengemudi di tikungan dengan cara menyingkirkan hambatan visual sejauh M (meter).

$$M = R \left(1 - Cos \left(\frac{28,65 \cdot JPH}{R} \right) \right)$$

$$M = 148 \left(1 - \cos \left(\frac{28,65 \cdot 81,821}{148} \right) \right)$$

M = 5,619 meter

Pada tikungan di STA 0+150 – STA 0+194, perlunya menghilangkan jarak penghalang sejauh 5,619 meter.

Hasil perhitungan alinyemen horizontal pada lintasan desain sirkuit gokart, terlihat bahwa lintasan terdiri dari kombinasi ruas lurus dan tikungan dengan panjang dan radius 148 meter. Trek lurus sepanjang 150 meter memberikan ruang akselerasi bagi kendaraan, sedangkan tikungan dengan radius 148 meter dirancang untuk menjaga stabilitas kendaraan saat berbelok. Perhitungan ini dilakukan untuk memastikan bahwa desain lintasan memenuhi standar keselamatan dan kenyamanan. Berdasarkan tabel 4 berikut.

> Tabel 4 Hasil Perhitungan Alinyemen Horizontal

7 tilli y chiefi 1101120litai			
Alinyemen horizontal pada lintasan desain sirkuit gokart			
Panjang Jalan	344,743 meter		
Panjang Trek Lurus	150 meter		
Panjang Tikungan	44,743 meter		
Lebar Jalan	8 meter		
Lebar Jalan ditikungan	11 meter		
Radius Tikungan	148 meter		
Kecepatan Rencana	60 km/jam		
Kecepatan Maksimum ditikungan	40,840 km/jam		
Jarang Pandang Henti	81,821 meter		
Daerah Bebas Samping ditikungan	5,619 meter		

Hasil Perhitungan Alinyemen Vertikal

Perencanaan alinyemen vertikal pada desain sirkuit gokart melibatkan analisis gradien atau kemiringan jalan yang berfungsi untuk memastikan kelancaran keselamatan lintasan. Dalam perencanaan ini. perubahan elevasi dimulai dari STA 0+000 hingga STA 0+150 dengan selisih ketinggian sebesar 0,828 meter pada lintasan lurus sepanjang 150 meter. Selanjutnya, pada segmen STA hingga STA 0+194 penurunan elevasi sebesar -0,408 meter pada bagian tikungan sepanjang 44,473 meter. Kemudian, dari STA 0+194 hingga STA 0+345 terdapat beda tinggi sebesar -0,903 meter pada lintasan lurus sejauh 150 meter. Desain sirkuit ini juga dirancang

dengan super elevasi maksimum sebesar 8%.

STA 0+000 – STA 0+150 mempunyai panjang 150 meter dan beda tinggi 0,828 meter

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak \ Horizontal} \times 100\%$$

$$Gradien = \frac{0.828}{150} \times 100\%$$

$$Gradien = 0.005 \times 100\%$$

$$Gradien = 0.5\%$$

STA 0+150 – STA 0+194 mempunyai panjang 44,473 meter dan beda tinggi - 0,408 meter

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak\ Horizontal} \times 100\%$$

$$Gradien = \frac{0,408}{44.473} \times 100\%$$

$$Gradien = 0.009 \times 100\%$$

$$Gradien = -0.9\%$$

STA 0+194 – STA 0+365 mempunyai panjang 150 meter dan beda tinggi -0,903 meter

$$Gradien = \frac{\Delta Elevasi}{\Delta Jarak\ Horizontal} \times 100\%$$

$$Gradien = \frac{0,903}{150} \times 100\%$$

$$Gradien = 0,006 \times 100\%$$

$$Gradien = -0.6\%$$

Dari hasil perhitungan berikut dapat dilihat bahwa gradien yang memiliki nilai plus yang berati elevasi menanjak serta yang memiliki gradien minus memiliki elevasi menurun.

Analisis Kelayakan Sirkuit Gokart

Analisis kelayakan desain sirkuit gokart dilakukan dengan menghitung alinyemen horizontal dan vertikal untuk memperoleh data parameter geometrik menyeluruh. lintasan secara Hasil perhitungan ini menjadi dasar penilaian apakah desain sirkuit sudah sesuai dengan standar teknis yang ditetapkan, sehingga mampu meminimalkan risiko kecelakaan dan tetap menghadirkan sensasi balap yang seru namun aman bagi pembalap. Penyesuaian desain dengan ketentuan teknis menjadi langkah penting agar lintasan tidak hanya menantang, tetapi juga layak dan aman digunakan. Tabel berikut menyajikan hasil perhitungan geometrik sirkuit gokart dibandingkan dengan standar persyaratan geometrik untuk pembangunan sirkuit gokart baik pada tingkat nasional maupun internasional.

Tabel 5 Hasil Perbadningan Spesifikasi Sirkuit Nasional.

Parameter Geometrik	Perhitungan Geometrik Sirkuit Gokart	Spesifikasi Geometrik Sirkuit Nasional	Kesesuaian
Panjang Lintasan Keseluruhan	344,743 meter	1700 meter atau <2000 meter	Tidak Sesuai
Panjang Trek Lurus	150 meter	<100 meter	Tidak Sesuai
Panjang Tikungan	44,743 meter	-	-
Lebar Jalan	8 meter	>5 m dengan rekomendasi : 6 m, maksimum 7,5 m	Tidak Sesuai
Lebar Jalan di Tikungan	11 meter	>6 m atau 1,5 m lebih lebar dari trek lurus	Sesuai
Radius Tikungan	148 meter	-	-
Kecepatan Rencana	60 km/jam	60 km/jam - 80 km/jam	Sesuai
Kecepatan Maksimum di Tikungan	40,840 km/jam	-	-
Jarak Pandang Henti	81,821 meter	=	-
Daerah Bebas Samping di Tikungan	5,619 meter	-	-
Gradien	0,5%, -0,9%, -0,6%	-	-
Superelevasi Maksimum	8%	rekomendai 5%, maksimum 10%	Sesuai namun direkomendasikan 5%

Tabel 6 Hasil Perbandingan Spesifikasi Sirkuit Internasional.

Parameter Geometrik	Perhitungan Geometrik Sirkuit Gokart	Spesifikasi Geometrik Sirkuit Internasional	Kesesuaian
Panjang Lintasan Keseluruhan	344,743 meter	Minimal 800 meter atau Maksimum 1700 meter	Tidak Sesuai
Panjang Trek Lurus	150 meter	120-150 meter	Sesuai
Panjang Tikungan	44,743 meter	-	-
Lebar Jalan	8 meter	Minimal 7 meter untuk sirkuit cepat	Sesuai
Lebar Jalan di Tikungan	11 meter	10 meter sampai 12 meter	Sesuai
Radius Tikungan	148 meter	-	-
Kecepatan Rencana	60 km/jam	80 km/jam - 110 km/jam	Tidak Sesuai
Kecepatan Maksimum di Tikungan	40,840 km/jam	-	-
Jarak Pandang Henti	81,821 meter	-	-
Daerah Bebas Samping di Tikungan	5,619 meter	-	-
Gradien	0,5%, -0,9%, -0,6%	< 5%, dengan gradien rekomendasi 2-3%	Sesuai
Superelevasi Maksimum	8%	rekomendasikan sekitar 5%	Sesuai namun direkomendasikan 5%

4. KESIMPULAN

- 1. Perencanaan desain sirkuit gokart belum sepenuhnya sesuai dengan standar konstruksi trek nasional maupun pedoman internasional dari CIK-FIA. Beberapa parameter seperti lintasan keseluruhan panjang (344,743 meter) tidak memenuhi ketentuan minimal yang disyaratkan, baik oleh standar nasional (minimal 1700 meter) maupun internasional (minimal 800 meter) dan nilai gradien lintasan luar masih di rekomendasi ideal (2–3%) meskipun tidak melampaui maksimum yang diizinkan. Dengan hasil kesimpulan tersebut. sirkuit gokart yang dirancang dinyatakan hanya layak dimanfaatkan sebagai lintasan rekreasi atau sebagai sarana latihan.
- 2. Nilai Alinyemen horizontal pada sirkuit ini mencakup panjang trek lurus 150meter dan tikungan sepanjang 44,743meter dengan radius tikungan 148meter, yang menghasilkan kecepatan maksimum di tikungan sebesar 40,840 km/jam. Jarak pandang henti sebesar 81,821 meter telah memenuhi kriteria minimum yang dipersyaratkan, yakni

minimal 75 meter pada kecepatan rencana 60 km/jam sesuai pedoman geometrik. Daerah bebas samping di tikungan yang sebesar 5,619 meter juga telah disediakan, yang bertujuan untuk memberikan ruang bebas dari hambatan visual atau fisik, untuk mengantisipasi kendaraan yang keluar jalur. Alinyemen vertikal, yang mencakup gradien dan superelevasi, menunjukkan bahwa gradien berkisar antara 0,5% hingga -0,9%, yang berarti lintasan memiliki kemiringan ringan. turun Sedangkan superelevasi sebesar 8%, masih dalam batas maksimum (10%).

5. SARAN

pengembangan Perlu dilakukan terhadap desain geometrik sirkuit gokart, terutama pada yang aspek belum memenuhi standar nasional dan internasional, seperti panjang lintasan keseluruhan yang masih jauh di bawah standar (minimal 800 meter untuk FIA dan 1700 meter untuk nasional). Penyesuaian ini penting agar sirkuit dapat digunakan dalam kejuaraan resmi dan memenuhi syarat pembuatan sirkuit gokart.

DAFTAR PUSTAKA

- Aldrin V Ferdinandus, N. L. (2017). Perencanaan Geometrik Jalan dan Tebal Perkerasan (Analisa Komponen Method) Pada Ruas Jalan Masiwang Airnanang Kabupaten Seram Bagian Timur Sta 40 + 000 43 + 000. Jurnal Manumata Vol 3, No 1, 1.
- Andi Ibrahim Yunus, F. R. (2023). Perencanaan Geometrik Jalan. Padang: Get Press Indonesia Anggota IKAPI No. 033/SBA.
- Association, A. K. (Version 5 Updated October 2016). National Track Contruction and Safety Guidlines. Australian Karting Association Ltd T/A Karting Australia.
- Balaka, M. Y. (2022). Metodologi Penelitian Kuantitatif. Bandung: Widina Bhakti Persada.
- Commission Internationale Karting-FIA. (2023). Leisure Karting Guidlines. Fédération Internationale de l'Automobile.
- Djoko Purwanto, A. K. (2015). Hubungan antara Kecepatan dan Kondisi Geometrik Jalan yang Berpotensi Menyebabkan Kecelakaan Lalu Lintas pada Tikungan. Jurnal MKTS, Jurnal Ilmu Terapan Bidang Teknik sipil Vol 21, No. 2,, 84.
- Dr. Abdul Muin, M. M. (2023). Buku Ajar Metode Penelitian Kuantitatif. Kota Malang: CV. Literasi Nusantara Abadi.
- Dr. Mukhtar Lutfie, S. M. (2024). Geometrik Jalan. Grup Penerbitan CV Tahta Media Grup.
- Ega Gumilar Hafiz, M. A. (2014). Analisis Pengaruh Panjang Baseline Terhadap Ketelitian Pengukuran Situasi Dengan Menggunakan GNSS Metode RTK-NTRIP (Studi Kasus: Semarang, Kab. Kendal dan Boyolali). Program Studi Teknik Geodesi, Fakultas Teknik, Universitas Diponegoro, Jurnal Geodesi Undip.
- Eric Kusidy. (2023). Perancangan Sirkuit Karting Medan Dengan Pendekatan Arsitektur Post-Modern. Jurnal Ruang Luar dan Dalam FTSP– Vol.05 No.01.

- Hizkia Davidson A. Milla, D. W. (2024). Pengembangan Perhitungan Alinyemen Horizontal dan Alinyemen Vertikal Antar Kota Berbasis Android . Jurnal Forum Teknik Sipil, Vol. 4 No.1, 73.
- Marga, K. P. (2021). Pedoman Desain Geometrik Jalan. Surat edaran Nomor: 20/SE/Db.
- Mochammad Qomaruddin, S. Y. (2016). Analisis alinyemen horizontal pada tikungan depan gardu PLN Ngabul di Kabupaten Jepara. Jurnal DISPROTEK Volume 7 no.2.
- Nazaruddin, D. M. (2020). Design and manufacture chassis and body of simple gokart using automatic clutch and 7.5 hp engine power. JurusanTeknik Mesin, FakultasTeknik, Universitas Riau, 1.
- Prima Juanita Romadhona, M. R. (2016). Evaluasi dan perbaikan geometri jalan pada ruas jalan Magelang Yogyakarta km 22 22,6. Jurnal Teknisia, Volume XXI, No. 2, Program Studi Teknik Sipil, Universitas Islam Indonesia, Yogyakarta, Indonesia.
- Pujiastutie, E. T. (2006). Pengaruh geometrik jalan terhadap kecelakaan lalu lintas di jalan tol (studi kasus tol Semarang dan tol Cikampek). Tesis, 15.
- Rindu Twidi Bethary, M. F. (2016). Perencanaan geometrik jalan alternatif Palima-Curug (studi kasus: Kota Serang). Jurnal Fondasi, Volume 5 No 2, 2.
- Sofwatillah. (2024). Teknik analisis data kuantitatif dan kualitatif dalam penelitian ilmiah. Journal Genta Mulia Volume 15, Number 2, pp. 79-91.
- Sukirman, S. (1999). Dasar-dasar Perencanaan Geometrik Jalan. Bandung: Nova.
- Tata Cara Perencanaan Geometrik Jalan Antar Kota. (No. 038/TBM/1997). Direktorat Jenderal Bina Marga.