PENGARUH HAMBATAN SAMPING PASAR KOSAMBI KOTA BANDUNG TERHADAP KINERJA LALU LINTAS JALAN THE EFFECT OF SIDE OBSTACLES OF KOSAMBI MARKET IN BANDUNG CITY ON ROAD TRAFFIC PERFORMANCE

Citra Artifiani Havianto ¹, Wildan Athoillah Taufik², Achmad Saeful Fasa³, Muhammad Ramadhan⁴

Program Studi Perencanaan Wilayah dan Kota, Fakultas Teknik, Perencanaan, dan Arsitektur, Universitas Winaya Mukti

Email: ¹citrarti@gmail.com, ²wildan.taufik2003@gmail.com, ³fasayu7@gmail.com, ⁴mrtoaha@yahoo.com

Abstrak

Penelitian ini menganalisis pengaruh hambatan samping terhadap kinerja lalu lintas di ruas jalan sekitar Pasar Kosambi, Kota Bandung, Aktivitas pasar, terutama kendaraan keluar dan masuk, sering menimbulkan gangguan lalu lintas yang berkontribusi terhadap kemacetan. Metode penelitian yang digunakan adalah deskriptif kuantitatif dengan acuan Manual Kapasitas Jalan Indonesia (MKJI, 1997). Data diperoleh melalui survei lapangan yang meliputi volume lalu lintas, kecepatan, serta frekuensi hambatan samping, kemudian dianalisis untuk menghitung kapasitas jalan, derajat kejenuhan (DS), dan tingkat pelayanan (LOS). Hasil penelitian menunjukkan bahwa nilai derajat kejenuhan di kawasan Pasar Kosambi mencapai 1,60 yang termasuk dalam kategori jenuh, sehingga kinerja lalu lintas berada pada Level of Service F. Hambatan samping dengan kategori kendaraan keluar/masuk memiliki pengaruh paling signifikan terhadap penurunan kinerja lalu lintas dibandingkan kategori hambatan lainnya. Temuan ini mengindikasikan bahwa semakin tinggi frekuensi hambatan samping, maka semakin rendah tingkat pelayanan jalan. Keberadaan aktivitas samping jalan di sekitar pasar berdampak langsung pada penurunan kinerja lalu lintas. Oleh karena itu, diperlukan upaya pengelolaan berupa pengaturan aktivitas kendaraan keluar/masuk, penataan parkir, serta penyediaan akses khusus agar dapat meningkatkan kelancaran arus lalu lintas di kawasan tersebut.

Kata kunci: Hambatan Samping, Kinerja Lalu Lintas, Pasar Kosambi Bandung

Abstract

This study analyzes the impact of side friction on traffic performance along the road segment surrounding Kosambi Market, Bandung City. Market activities, particularly vehicles entering and exiting the area, frequently disrupt traffic flow and contribute to congestion. The research employs a descriptive quantitative method, referring to the Indonesian Highway Capacity Manual (MKJI, 1997). Data were collected through field surveys, including traffic volume, speed, and side friction frequency, then analyzed to calculate road capacity, degree of saturation (DS), and level of service (LOS). The results indicate that the degree of saturation in the Kosambi Market area reached 1.60, categorized as oversaturated, with traffic performance falling into Level of Service F. Side friction from vehicles entering and exiting the roadway was identified as the most

significant factor contributing to the decline in traffic performance compared to other side friction categories. These findings reveal that the higher the frequency of side friction, the lower the level of service achieved. Roadside activities in the market area directly reduce traffic performance. Therefore, management efforts such as regulating vehicle access, organizing parking, and providing dedicated access are required to improve traffic flow efficiency in the Kosambi Market corridor.

Keywords: Side Friction, Road Performance Traffic, Kosambi Market Bandung

1. PENDAHULUAN

Perkotaan merupakan kawasan pemukiman yang secara fisik ditunjukan oleh kumpulan permukiman dan memiliki fasilitas untuk mendukung kehidupan warganya secara mandiri (Fasa & Revayanti, 2021). Kosambi merupakan Kawasan yang terletak di Kecamatan Sumur Bandung, Kota Bandung, di Kawasan Kosambi ini terdapat banyak sekali pertokoan di sepanjang jalan kawasan ini. Pertumbuhan ekonomi di Kawasan Kosambi ini memiliki potensi yang tinggi karena didukung juga dengan letaknya yang strategis karena berada di jalan Ahmad Yani yang merupakan jalan arteri sekunder yang memiliki peran sangat penting untuk menghubungkan pusat kegiatan wilayah dengan status sebagai jalan nasional sehingga pertumbuhan ekonomi di Kawasan Kosambi ini menjadi potensi bagi para pedagang-pedagang untuk berjualan disana. Aktivitas yang banyak terjadi di Kawasan Kosambi ini berupa perdagangan dan jasa seperti pasar, toserba, dan juga toko-toko lainnya.

Aktivitas yang terjadi di Kawasan pasar Kosambi tersebut menjadi penyebab adanya masalah hambatan samping seperti kendaraan yang berhenti sesaat, kendaraan yang bergerak secara perlahan, bahkan ada pula masyarakat yang memenfaatkan bahu jalan sebagai tempat memarkirkan kendaraannya untuk melakukan transaksi di sepanjang ruas jalan tersebut. Aktivitas yang dilakukan masyarakat tersebut dapat menyebabkan terganggunya arus lalu lintas dan menurunkan kecepatan kendaraan sehingga meningkatkan jumlah kendaraan yang melintasi jalan tersebut. Pada jam sibuk seperti pada pagi hari dan sore akan semakin memperparah keadaan lalu lintas pada jalan ini karena tingginya pergerakan masyarakat yang melewati ruas jalan ini dengan kepentingan setiap orang yang berbeda-beda. Volume lalu lintas yang tinggi di kawasan ini menjadi tanda bahwa infrastruktur jalan di kawasan pasar kosambi menahan beban yang berlebihan dari beban yang dapat di tampung.

Berdasarkan informasi yang dilansir dari prfmnews.id pada tahun 2022, kawasan Pasar Kosambi di Kota Bandung dilaporkan mengalami kemacetan lalu lintas yang cukup parah. Kemacetan tersebut terjadi pada hari Sabtu dan mulai terlihat sejak pukul 16.00 WIB. Kondisi lalu lintas menjadi padat merayap, tidak hanya di satu arah, tetapi terjadi di kedua arah ruas jalan yang melintasi pasar tersebut. Berdasarkan pantauan di lapangan, kepadatan ini disebabkan oleh tingginya aktivitas masyarakat yang berbelanja maupun melakukan aktivitas lainnya di sekitar pasar menjelang waktu malam, ditambah dengan adanya kendaraan yang berhenti sembarangan, parkir liar, serta kendaraan yang keluar masuk area pasar yang menimbulkan hambatan samping. Situasi ini memperburuk kelancaran arus lalu lintas dan menurunkan kinerja jalan di sekitar kawasan Pasar Kosambi. Oleh karena itu penelitian ini dilakukan untuk mengetahui bagaimana pengaruh hambatan samping terhadap kinerja lalu lintas di kawasan Kosambi akibat dari adanya aktivitas perdagangan pasar kosambi yang ada di kawasan kosambi.

2. METODE PENELITIAN

Metode yang digunakan dalam penelitian ini adalah metode deskriptif kuantitatif. Metode analisis deskriptif kuantitatif adalah metode analisis yang menggunakan angka atau statistik untuk menggambarkan atau menjelaskan karakteristik dari suatu fenomena atau variabel dari suatu penelitian. Untuk data yang dibutuhkan ada dua yaitu data primer dan data sekunder. Data primer didapatkan dengan cara melalkukan observasi lapangan dan dokumentasi. Sementara itu untuk data sekunder dilakukan dengan melakukan survey instansional. Adapun tahapan analisis yang dilakukan untuk melakukan penelitian ini yaitu analisis hambatan samping, analisis kinerja lalu lintas, dan analisis pengaruh hambatan samping terhadap kinerja lalu lintas

Analisis hambatan samping dilakukan dengan melaksanakan observasi lapangan atau pengamatan secara langsung untuk mengatahui berbagai hambatan samping yang dijumpai pada sepanjang ruas jalan yang menjadi lokasi penelitian. Setelah data didapatkan kejadian hambatan samping kemudian dikalikan dengan frekuensi bobot berikut merupakan tabel bobot dari hambatan samping:

Simbol Tipe Kejadian **Faktor Bobot** Peialan Kaki PED 0,5 Kendaraan Berhenti PSV 1.0 Kendaraan Keluar Masuk EEV 0,7 Pedagang Kaki Lima PKL 1.0 Kendaraan Lambat **SMV** 0.4

Tabel 2.1 Faktor Bobot Dalam Hambatan Samping

Sumber: MKJI 1997

Adapun rumus yang digunakan untuk menentukan frekuensi bobot pada hambatan samping sebagai berikut

PED = Faktor Bobot X Frekuensi Kejadian

PSV = Faktor Bobot X Frekuensi Kejadian

EEV = Faktor Bobot X Frekuensi Kejadian......(1)

PKL = Faktor Bobot X Frekuensi Kejadian

SMV = Faktor Bobot X Frekuensi Kejadian

Lalu untuk analisis kinerja lalu lintas dilakukan untuk mengidentifikasi volume lalu lintas yang ada di lokasi penelitian, lalu data yang didapatkan akan diolah sesuai dengan pedoman yang ada yaitu manual kapasitas jalan Indonesia (MKJI) untuk mengetahui bagaimana kinerja jalan di suatu ruas apakah arus lalu lintas berjalan dengan baik atau mengalami masalah seperti kemacetan.

1. Analisis Volume Lalu Lintas

Volume lalu lintas menurut MKJI 1997 adalah jumlah kendaraan yang melewati suatu titik persatuan waktu pada lokasi tertentu. Volume lalu lintas di hitung dengan rumus sebagai berikut:

$$Q = Qi \cdot emp$$
....(2)

Dimana:

Q = Volume (Smp/jam)

Qi = Volume Lalu Lintas (kend/jam)

emp = Faktor Ekivalen Kendaraan

2. Analisis Kapasitas Jalan

Menurut MKJI 1997 kapasitas jalan adalah arus lalu lintas maksimal yang bisa didukung oleh ruas jalan. Untuk menentukan kapasitas jalan ini menggunakan rumus sebagai berikut:

$$C = C_0.FC_W.FC_{SP}.FC_{SF}.FC_{CS}...$$
(3)

Dimana:

C = Kapasitas (Smp/jam)

Co = Kapasitas dasar (Smp/jam)

FCw = Faktor Penyesuaian Lebar Jalan

FCsp = Faktor Penyesuaian Pemisah Arah (Hanya Untuk jalan yang terbagi)

FCsf = Faktor Penyesuaian Hambatan Samping dan Bahu Jalan

FCcs = Faktor Penyesuaian Ukuran Kota

3. Analisis Derajat Kejenuhan

Nilai DS sendiri memperlihatkan seberapa besar jalan memiliki kapasitas yang bermasalah atau tidak. Rumus yang digunakan adalah sebagai berikut:

$$DS = \frac{Q}{C}...(4)$$

Dimana:

Q = Arus Lalu lintas

C = Kapasitas Jalan

4. Analisis Kecepatan Arus Bebas dan Waktu Tempuh

Rumus yang digunakan untuk menentukan arus bebas ini sebagai berikut:

$$FV = (FV_{O.} + FV_{W}).FFV_{SF}.FFV_{CF}.$$
(5)

Dimana:

FV = Kecepatan arus bebas kendaraan kendaraan ringan pada kondisi

Lapangan (km/jam)

Fvo = Kecepatan arus bebas dasar kendaraan ringan pada jalan yang diamati

(km/jam)

FVW = Penyesuaian kecepatan untuk lebar jalan (km/jam)

FFVSF = Faktor penyesuaian akibat hambatan samping dan lebar bahu

FFVCF = Faktor penyesuaian untuk ukuran kota

Sedangkan, waktu tempuh merupakan waktu yang dibutuhkan kendaraan dalam melintasi suatu ruas jalan yang dapat ditentukan dengan rumus berikut:

$$V = \frac{L}{TT}.$$
(6)

Dimana:

V = Kecepatan rata-rata ruang LV (km/jam)

L =Panjang Segmen (km)

TT = Waktu tempuh rata-rata LV sepanjang segmen (jam)

5. Analisis Tingkat Pelayanan Jalan

Berikut merupakan rumus yang digunakan untuk menghitung tingkat pelayanan jalan:

$$LOS = \frac{v}{c}...(7)$$

Dimana

V = Volume arus lalu lintas total (smp/jam)

C = Kapasitas dasar

Lalu teknik analisis pengaruh hambatan samping terhadap kinerja lalu lintas jalan dilakukan dengan cara data yang sudah didapatkan sebelumnya dengan membandingkan menggunakan grafik scatter plot. Peneliti menggunakan scatter plot untuk menentukan hubungan antara dua variabel dengan memvisualisasikan data dalam bentuk titik-titik pada bidang koordinat kartesius. Setiap titik pada diagram sebar mewakili sepasang nilai dari dua variabel yang diamati, di mana posisi horizontal menunjukkan nilai variabel bebas dan posisi vertikal menunjukkan nilai variabel terikat.

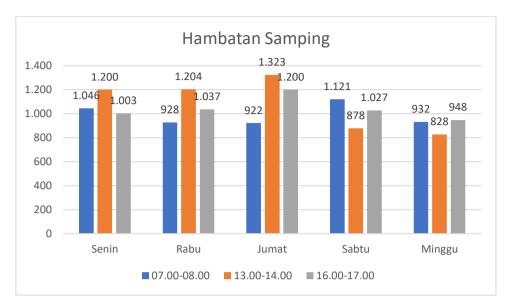
3. HASIL DAN PEMBAHASAN

A. Analisis Hambatan Samping

Dari hasil analisis dari data yang sudah didapatkan, menunjukan bahwa hambatan samping paling tinggi terjadi pada hari Jumat pada pukul 13.00-14.00 dengan akumulasi perhitungan seperti berikut:

```
SF = (PED X Faktor bobot) + (PSV X Faktor bobot) + (EEV X Faktor bobot) + (PKL X Faktor bobot) + (SMV X Faktor bobot) [1]
```

$$SF = (224 \times 0.5) + (160 \times 1) + (1.437 \times 0.7) + (27 \times 1) + (45 \times 0.4) [2]$$


SF = 112 + 160 + 1.006 + 27 + 18[3]

SF = 1.323 kejadian/jam [4]

Tabel 3. 1 Grafik Total Hambatan Samping

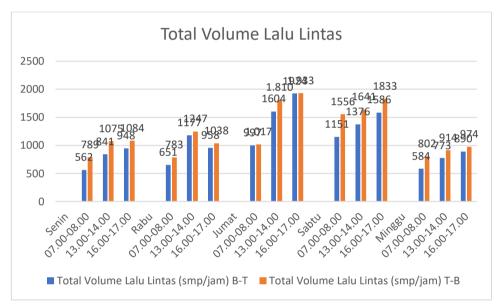
Waktu	Senin	Rabu	Jumat	Sabtu	Minggu	
07.00-	1.046	928	922	1.121	932	
08.00 13.00-						
14.00	1.200	1.204	1.323	878	828	
16.00- 17.00	1.003	1.037	1.200	1.027	948	
Total	3.249	3.169	3.445	3.026	2.708	
Nilai Max	1.323 Kejadian/jam					
Nilai Min	828 Kejadian/jam					

Sumber: Hasil Analisis Penulis, 2025

Gambar 3. 1 Grafik Total Hambatan Samping

Dari hasil menunjukan bahwa kelas hambatan hambatan samping paling tinggi terjadi pada Jumat pada pukul 13.00-14.00 dengan kejadian mencapai 1.323 kejadian/jam termasuk kedalam kelas hambatan samping sangat tinggi (HV) dengan kejadian diatas >900 kejadian/jam. Sedangkan untuk kelas hambatan samping paling rendah terjadi pada hari minggu pada pukul 13.00-14.00 dengan kejadian 828 kejadian/jam termasuk kedalam kelas hambatan samping tinggi (H) dengan kejadian 500-899 kejadian/jam.

B. Analisis Kinerja Lalu Lintas


1. Analisis Volume Lalu Lintas

Volume lalu lintas merupakan jumlah kendaraan yang melintas pada suatu titik segmen jalan dalam periode waktu tertentu. Untuk memperoleh nilai dalam satuan smp/jam, volume kendaraan dikonversi dengan menggunakan nilai ekuivalen mobil penumpang (emp) sesuai MKJI 1997. Pada Jalan Ahmad Yani Kota Bandung yang bertipe 4/2 UD, konversi dilakukan dengan faktor emp: sepeda motor (MC) = 0,4; kendaraan ringan (LV) = 1; dan kendaraan berat (HV) = 1,3. Maka perhitungan volume kendaraan dalam satuan smp/jam adalah sebagai berikut:

Tabel 3. 2 Total Volume Lalu Lintas

Waktu	Total Volume Lalu Lintas (smp/jam)							
waktu	В-Т	Т-В						
	Senin							
07.00-08.00	562	789						
13.00-14.00	841	1075						
16.00-17.00	948	1084						
	Rabu							
07.00-08.00	651	783						
13.00-14.00	1177	1247						
16.00-17.00	958	1038						
Jumat								
07.00-08.00	997	1.017						
13.00-14.00	1.604	1.810						

Wolsten	Total Volume Lalu Lintas (smp/jam)						
Waktu	В-Т	T-B					
16.00-17.00	1.924	1.933					
	Sabtu						
07.00-08.00	1151	1556					
13.00-14.00	1376	1641					
16.00-17.00	1586	1833					
Minggu							
07.00-08.00	584	802					
13.00-14.00	773	914					
16.00-17.00	890	974					

Gambar 3. 2 Grafik Total Volume Lalu Lintas

Sumber: Hasil Analisis Penulis, 2025

Dari hasil analisis menunjukan bahwa volume lalu lintas di ruas Jalan Ahmad Yani kawasan pasar kosambi Kota Bandung arah T-B (Timur menuju Barat) memiliki total volume lalu lintas yang lebih tinggi dibanding dengan arah B-T (Barat menuju Timur) hal ini bisa terjadi karena adanya penyempitan ruas jalan di arah B-T yang disebabkan oleh adanya parkir *on street* yang tidak sesuai dengan standar yang ada. Dari total volume lalu lintas baik dari arah B-T (Barat menuju Timur) maupun arah T-B (Timur menuju Barat) memiliki volume lalu lintas tertinggi sama pada hari yang sama yaitu pada hari jumat pukul 16.00-17.00 dengan total 1.933 smp/jam pada arah T-B dan 1.924 smp/jam para arah B-T.

2. Analisis Kapasitas Jalan

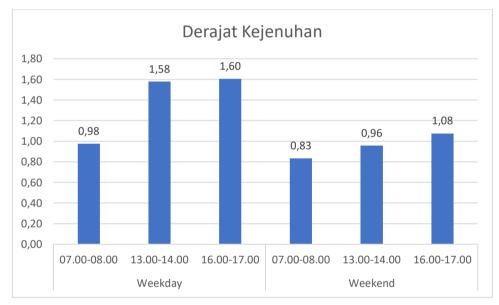
Kapasitas jalan adalah arus lalu lintas maksimal yang bisa didukung oleh ruas jalan pada suatu waktu dengan kondisi serta arus lalu lintas tertentu. Kapasitas jalan dinyatakan dalam jumlah kendaraan yang melewati potongan jalan tertentu dalam satu jam (kend/jam). Berikut merupakan perhitungan Kapasitas jalan:

 $C = C_O x F C_W x F C_{SP} x F C_{SF} x F C_{CS} (smp/jam)$ [1]

C = 6000x0,91x1x0,9x1 [2]

C = 4.914 smp/jam [3]

Jadi, nilai kapasitas Jalan Ahmad Yani Kota Bandung kawasan pasar kosambi yang di dapat sebesar 4.914 smp/jam.


3. Analisis Derajat Kejenuhan

Derajat kejenuhan (DS) adalah perbandingan antara volume lalu lintas (V) dengan kapasitas jalan (C). Nilai DS yang efektif (tidak menimbulkan masalah) adalah ≤ 0,75. Jika DS mendekati atau melebihi 1, maka kondisi jalan dianggap mendekati atau sudah jenuh, dengan potensi kemacetan dan antrean panjang. Berikut merupakan hasil perhitungan dari derajat kejenuhan.

 \mathbf{C} Hari Q Derajat Kejenuhan (Q/C) 07.00-13.00-16.00-07.00-16.00-13.00-08.00 14.00 08.00 14.00 17.00 17.00 Weekday 4.914 4.799 7.754 7.885 0.98 1,58 1,60 4.914 Weekend 4.093 4.704 5.283 0.96 0,83 1,08

Tabel 3. 3 Derajat Kejenuhan

Sumber: Hasil Analisis Penulis, 2025

Gambar 3. 3 Grafik Derajat Kejenuhan

Sumber: Hasil Analisis Penulis, 2025

Hasil analisis menunjukkan bahwa nilai derajat kejenuhan di sekitar Pasar Kosambi cenderung tinggi, dengan puncak pada hari kerja (weekday) mencapai 1,60 yang mengindikasikan kemacetan sangat parah, terutama pada hari Jumat akibat peningkatan aktivitas masyarakat setelah jam kerja seperti berbelanja, rekreasi, atau mencari hiburan yang memicu lonjakan volume kendaraan dan pejalan kaki. Pada akhir pekan (weekend), nilai tertinggi terjadi pada Sabtu sore pukul 16.00−17.00 dengan puncak 1,08, dipicu oleh kegiatan berbelanja kebutuhan mingguan, rekreasi, dan aktivitas sosial yang turut menambah kepadatan lalu lintas. Kondisi ini sudah melampaui batas toleransi derajat kejenuhan yang ditetapkan Manual Kapasitas Jalan Indonesia (MKJI) 1997, yakni ≤ 0,75, sehingga nilai di atas ambang tersebut menandakan volume kendaraan telah melebihi kapasitas jalan dan berpotensi besar menimbulkan kemacetan serta hambatan lalu lintas.

4. Analisis Kecepatan Arus Bebas

Analisis kecepatan arus bebas adalah analisis yang dilakukan untuk mengetahui kecepatan yang digunakan oleh pengemudi ketika mengendarai kendaraan bermotor tanpa dipengaruhi oleh kendaraan lainnya di jalan. Berikut merupakan hasil analisis kecepatan arus bebas dari setiap jenis kendaraan:

Kecepatan MC

$$FV = (FV_{O.} + FV_{W}). FFV_{SF}. FFV_{CF}$$
 [1]
 $FV = (43 + (-4). 0, 9.1, 00$ [2]
 $FV = 35 \text{ km/jam}$ [3]

Kecepatan LV

$$FV = (FV_{O.} + FV_{W}). FFV_{SF}. FFV_{CF}$$
 [1]
 $FV = (53 + (-4).0,9.1,00$ [2]
 $FV = 44 \text{ km/jam}$ [3]

Kecepatan HV

$$FV = (FV_{O.} + FV_{W}). FFV_{SF}. FFV_{CF}$$
 [1]
 $FV = (46 + (-4). 0, 9.1, 00$ [2]
 $FV = 38 \text{ km/jam}$ [3]

5. Analisis Kecepatan dan Waktu Tempuh

Panjang segmen jalan yang digunakan 100 m karena jarak tersebut merupakan jarak efektif untuk menghitung waktu tempuh kendaraan dalam mencari kecepatan dan waktu tempuh. Setelah data didapatkan kemudian di rata-ratakan berdasarkan waktu penelitian berikut merupakan hasil analisis dari kecepatan dan waktu tempuh:

Tabel 3. 4 Kecepatan dan Waktu Tempuh Kawasan Pasar Kosambi

Hari	Waktu	Jarak (km)	Waktu tempuh (jam)	Waktu tempuh (jam)	Kecepatan (km/jam)	Kecepatan (km/jam)
			B-T	T-B	B-T	T-B
	07.00- 08.00	0,1	0,0053	0,0051	19,13	19,84
Senin	13.00- 14.00	0,1	0,0054	0,0051	18,70	19,62
	16.00- 17.00	0,1	0,0058	0,0055	17,37	18,20
Rabu	07.00- 08.00	0,1	0,0067	0,0067	15,01	14,87
	13.00- 14.00	0,1	0,0057	0,0056	17,50	17,99
	16.00- 17.00	0,1	0,0057	0,0060	17,65	16,70
Jumat	07.00- 08.00	0,1	0,0076	0,0073	13,11	14,28
	13.00- 14.00	0,1	0,0065	0,0074	15,46	13,48
	16.00- 17.00	0,1	0,0072	0,0071	14,03	14,28

Hari	Waktu	Jarak (km)	Waktu tempuh (jam) B-T	Waktu tempuh (jam) T-B	Kecepatan (km/jam) B-T	Kecepatan (km/jam) T-B
	07.00- 08.00	0,1	0,0067	0,0053	15,04	18,91
Sabtu	13.00- 14.00	0,1	0,0071	0,0065	14,16	15,58
	16.00- 17.00	0,1	0,0071	0,0071	14,80	15,13
	07.00- 08.00	0,1	0,0076	0,0070	13,35	14,56
Minggu	13.00- 14.00	0,1	0,0072	0,0059	14,06	17,66
	16.00- 17.00	0,1	0,0060	0,0053	16,62	18,87

Gambar 3. 4 Grafik Kecepatan dan Waktu Tempuh Kendaraan Sumber: Hasil Analisis Penulis, 2025

Hasil analisis menunjukkan bahwa waktu tempuh terlama arah Barat-Timur terjadi pada Jumat pukul 07.00–08.00 dengan kecepatan 13,11 km/jam, sedangkan tercepat pada Senin pukul 07.00–08.00 dengan kecepatan 19,13 km/jam. Pada arah Timur-Barat, waktu tempuh terlama tercatat pada Jumat pukul 13.00–14.00 dengan kecepatan 13,48 km/jam, dan tercepat pada Senin pukul 07.00–08.00 dengan kecepatan 19,84 km/jam. Variasi ini dipengaruhi aktivitas samping jalan seperti pejalan kaki, parkir,

6. Analisis Tingkat Pelayanan Jalan

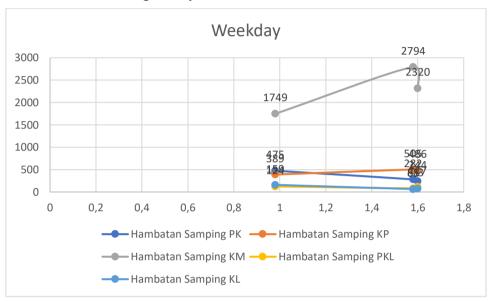

Analisis ini dilakukan dengan melakukan perbandingan antara volume kendaraan dalam satuan smp/jam dengan kapasitas jalan. Berikut merupakan hasil analisis tingkat pelayanan kawasan pasar kosambi:

pedagang kaki lima, serta kendaraan keluar masuk yang menurunkan kapasitas jalan.

Tabel 3. 5 Tingkat Pelayanan Kawasan Pasar Kosambi

Hari	Waktu	V	C	V/C	LOS	Keterangan

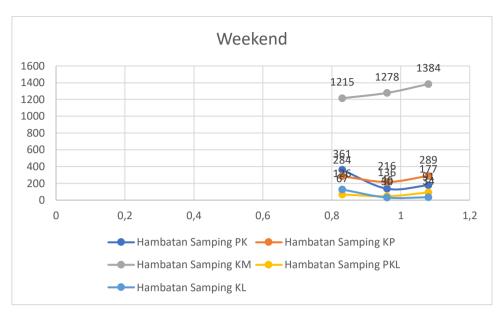
Weekday	07.00- 08.00	4.799	4.914	0,98	Е	Pergerakan tidak stabil, volume mendekati kapasitas, kendaraan melaju pelan
	13.00- 14.00	7.754	4.914	1,58	F	Pergerakan lambat, kendaraan melaju pelan, volume di atas kapasitas, banyak berhenti
	1600- 17.00	7.885	4.914	1,60	F	Pergerakan lambat, kendaraan melaju pelan, volume di atas kapasitas, banyak berhenti
	07.00- 08.00	4.093	4.914	0,83	D	Mendekati pergerakan tidak stabil, kendaraan Melaju pelan
Weekend	13.00- 14.00	4.704	4.914	0,96	E	Pergerakan tidak stabil, volume mendekati kapasitas, kendaraan melaju pelan
	1600- 17.00	5.283	4.914	1,08	F	Pergerakan lambat, kendaraan melaju pelan, volume di atas kapasitas, banyak berhenti


Gambar 3. 5 Grafik Tingkat Pelayanan Jalan

Sumber: Hasil Analisis Penulis, 2025

Hasil analisis menunjukkan bahwa tingkat pelayanan lalu lintas terburuk di kawasan Pasar Kosambi terjadi pada weekday pukul 16.00–17.00 dengan nilai LOS 1,60 (kategori F), yang menggambarkan arus lalu lintas terhambat, kecepatan rendah, dan volume kendaraan tinggi. Kondisi ini menurunkan kapasitas jalan secara signifikan serta menimbulkan dampak berupa peningkatan polusi udara, pemborosan waktu dan bahan bakar, penurunan produktivitas, serta meningkatnya potensi kecelakaan lalu lintas.

C. Analisis Pengaruh Hambatan Samping Terhadap Kinerja Lalu Lintas Jalan


Hambatan samping merupakan aktivitas di sekitar ruas jalan yang berpotensi menurunkan kapasitas dan kinerja lalu lintas, khususnya di kawasan perkotaan. Analisis pengaruh hambatan samping di Pasar Kosambi dilakukan dengan memanfaatkan grafik scatter plot pada Microsoft Excel berdasarkan data observasi selama 5 hari (Senin, Rabu, Jumat, Sabtu, dan Minggu) pada tiga periode waktu (pagi, siang, sore), yang kemudian dikelompokkan ke dalam kategori hari kerja (weekday) dan hari libur (weekend).Berikut merupakan hasil Gambaran grafiknya:

Gambar 3. 6 Grafik *Scatter Plot* Pengaruh Hambatan Samping Terhadap Kinerja Lalu Lintas Pada Hari Kerja

Sumber: Hasil Analisis Penulis, 2025

Dari grafik scatter plot di atas dapat dilihat bahwa terdapat pengaruh yang signifikan antara Lost of Service (LOS) dengan tingkat hambatan samping di wilayah kajian. Grafik tersebut menunjukkan bahwa hubungan LOS dan hambatan samping memiliki hubungan yang positif yang dimana seiring dengan meningkatnya nilai LOS, hambatan samping juga mengalami peningkatan yang signifikan meskipun terjadi penurunan pada jam sore hari tetapi hubungan antar 2 variabel tersebut memiliki hubungan yang kuat. Dari grafik di atas menunjukan bahwa kategori hambatan samping tinggi diakibatkan oleh hambatan samping keluar atau masuk kendaraan dengan jumlah kejadian tertinggi mencapai 2.794 kejadian dengan lost of service menunjukan pada angka 1,58.

Gambar 3. 7 Grafik *Scatter Plot* Pengaruh Hambatan Samping Terhadap Kinerja Lalu Lintas Pada Hari Libur

Dari grafik scatter plot di atas dapat dilihat bahwa terdapat pengaruh yang signifikan antara Lost of Service (LOS) dengan tingkat hambatan samping di wilayah kajian. Grafik tersebut menunjukkan bahwa hubungan LOS dan hambatan samping memiliki hubungan yang positif seiring dengan meningkatnya nilai LOS, hambatan samping juga mengalami peningkatan yang signifikan. Dari grafik di atas menunjukan bahwa kategori hambatan samping tinggi diakibatkan oleh hambatan samping keluar atau masuk kendaraan seperti pada sore hari Dimana hambatan samping paling tinggi mencapai 1.384 kejadian terjadi sehingga nilai LOS juga meningkat sampai pada angka 1,08.

4. KESIMPULAN

Berdasarkan dari hasil analisis yang mengacu pada rumusan masalah dan sasaran yang telah ditentukan, maka Kesimpulan dari hasil analisis secara keseluruhan adalah sebagai berikut:

- 1. Hambatan samping di kawasan Pasar Kosambi menunjukkan tingkat kejadian yang sangat tinggi, dengan jenis hambatan dominan meliputi aktivitas pejalan kaki atau penyeberang jalan, kendaraan berhenti atau parkir di tepi jalan, kendaraan keluar atau masuk dari sisi jalan, keberadaan pedagang kaki lima (PKL), serta pergerakan kendaraan lambat. Puncak hambatan samping tercatat pada hari Jumat sekitar pukul 13.00–14.00 dengan intensitas mencapai 1.323 kejadian per jam, yang menurut klasifikasi termasuk dalam kategori sangat tinggi (*High Very / HV*). Kondisi ini dipicu oleh peningkatan signifikan aktivitas masyarakat pada waktu makan siang dan setelah pelaksanaan salat Jumat, ketika banyak individu menuju atau melewati area pasar untuk kembali dari tempat ibadah, sehingga memicu lonjakan mobilitas pejalan kaki, meningkatnya aktivitas parkir atau berhenti kendaraan, serta bertambahnya pergerakan kendaraan lambat di sekitar lokasi.
- 2. Kinerja lalu lintas di kawasan Pasar Kosambi yang terletak di Jalan Ahmad Yani berada pada kondisi sangat jenuh dan tidak optimal, dengan volume lalu lintas yang

- tinggi terutama pada jam-jam puncak. Puncak tertinggi tercatat pada hari Jumat pukul 16.00–17.00 dengan volume mencapai 1.933 smp/jam untuk arah Timur–Barat (T–B), sementara kapasitas jalan teridentifikasi sebesar 4.914 smp/jam. Nilai Derajat Kejenuhan (DS) di lokasi ini sering melampaui 1,00, bahkan mencapai 1,60 pada hari kerja pada rentang waktu yang sama, yang menempatkan tingkat pelayanan (*level of service*) pada kategori F. Kondisi tersebut mengindikasikan penurunan drastis kecepatan rata-rata kendaraan, peningkatan signifikan waktu tempuh, serta menunjukkan bahwa kapasitas jalan sudah tidak mampu menampung beban lalu lintas yang terjadi.
- 3. Hasil analisis menunjukkan bahwa hambatan samping memiliki pengaruh yang sangat signifikan dan berkorelasi positif terhadap penurunan kinerja lalu lintas, khususnya pada *Level of Service* (LOS). Peningkatan frekuensi kejadian hambatan samping, terutama dari kategori kendaraan keluar atau masuk sisi jalan (KM), berbanding lurus dengan memburuknya tingkat pelayanan jalan. Hal ini terlihat jelas pada grafik *scatter plot* yang memperlihatkan kenaikan nilai LOS hingga mencapai 1,60 (kategori F) pada sore hari kerja, bertepatan dengan tingginya intensitas hambatan samping. Temuan ini membuktikan bahwa aktivitas di sisi jalan, khususnya pergerakan kendaraan keluar dan masuk, merupakan faktor kunci yang secara signifikan mengurangi kapasitas jalan dan memperparah kondisi lalu lintas di kawasan Pasar Kosambi.

5. SARAN

Berdasarkan dari hasil Kesimpulan yang telah dibuat, berikut merupakan saran yang diajukan untuk meningkatkan kinerja lalu lintas di kawasan pasar kosambi:

1. Rekomendasi untuk Pemerintah

- A. Melakukan penataan trotoar di sepanjang kawasan Pasar Kosambi. Pastikan trotoar bebas dari PKL dan parkir liar, serta fungsikan sepenuhnya sebagai jalur pejalan kaki yang aman dan nyaman.
- B. Menerapkan manajemen parkir yang ketat dengan menyediakan fasilitas parkir *off-street* yang memadai di sekitar area pasar. Jika parkir *on-street* masih diperlukan, atur secara paralel dengan jam operasional yang jelas dan penegakan hukum yang konsisten.

2. Rekomendasi untuk Pengelola Pasar

- A. Melakukan relokasi atau penataan PKL ke area khusus yang terintegrasi dengan pasar, seperti *food court* atau zona kios yang didesain secara permanen dan tidak mengganggu pergerakan di jalan utama.
- B. Optimalisasi Ruang Bongkar Muat (*Loading Zone*) dengan membuat zona khusus bongkar muat barang di dalam atau di sekitar area pasar yang tidak mengganggu arus lalu lintas utama. Tetapkan jadwal bongkar muat yang ketat, terutama di luar jam sibuk jalan, dan pastikan pengawasan untuk kepatuhan.

3. Saran Untuk Peneliti Selanjutnya

- 1. Melakukan penelitian kualitatif untuk menggali lebih dalam faktor sosialekonomi yang mendorong aktivitas PKL dan parkir ilegal di tepi jalan, serta persepsi masyarakat dan pelaku usaha terhadap penataan ulang yang diusulkan. Hal ini penting untuk memastikan solusi yang humanis dan dapat diterima.
- 2. Lakukan analisis kinerja jaringan transportasi yang lebih luas untuk memahami bagaimana perubahan di koridor Pasar Kosambi dapat mempengaruhi pola pergerakan dan kinerja lalu lintas di area sekitarnya.

3. Disarankan untuk melakukan penelitian lanjutan untuk bisa mengimplementasikan arah pengembangan yang telah dirumuskan.

DAFTAR PUSTAKA

Buku, Skripsi, jurnal:

Suwardo dan Iman Haryanto. 2018. Perancangan Geometrik Jalan

Manual Kapasitas Jalan Indonesia (MKJI 1997) Departemen Pekerjaan Umum Direktorat Jendral Bina Marga

Fasa, A. S., & Revayanti, I. (2021). Kajian Penentuan Sistem Pusat Pelayanan Kawasan Perkotaan di Kecamatan Jatinangor. *Geoplanart*, *3*(2), 85. https://doi.org/10.35138/gp.v3i2.347

Zulkifli. 2021. Analisis Pengaruh Hambatan Samping Akibat Aktifitas Pasar Tradisional Lasi Terhadap Kinerja Lalu Lintas Jalan Kabupaten Agam. (Skripsi, Fakultas Teknik: Universitas Muhammadiyah. Sumatra Barat).

- Arif Novi Darmawan. 2023. Analisis Kemacetan Lalu Lintas Pada Ruas Jalan Pertahanan Amplas Kota Medan. (Skripsi, Fakultas Teknik: Universitas Medan Area. Medan).
- Nadhira Nova Laudza. 2023. Pengaruh Hambatan Samping Terhadap Tingkat Pelayanan Jalan Jenderal Sudirman Kabupaten Pemalang(Skripsi. Perencanaan Wilayah dan Kota. Universitas Islam Sultan Agung. Semarang).
- Tan Lie Ing, Indra Rachman Efendi. 2007. Evaluasi Kinerja Jalan Jendral Ahmad Yani Depan Pasar Kosambi Bandung. (Jurnal Teknik Sipil. Volume 3 Nomor 1. April 2007: 1-102)

Website:

- Wikipedia. 2023. Kemacetan. Diakses pada 18 November 2024 Dari https://id.wikipedia.org/wiki/Kemacetan.
- Uceo. 2016. Metode Pengumpulan Data dalam Penelitian. Diakses pada 19 November 2024 Dari https://informatika.ciputra.ac.id/2016/02/2016-2-18-metode-pengumpulan-data-dalam-penelitian/.
- Kelurahan Kebon Pisang. Profil Singkat Kelurahan Kebon Pisang. Diakses pada 28 Januari 2025 Dari https://multisite.bandung.go.id/kelurahan-kebon-pisang/.